Bài 2 trang 5 SGK Toán 8 tập 1

Giải bài 2 trang 5 SGK Toán 8 tập 1. Thực hiện phép nhân, rút gọn rồi tính giá trị của biểu thức:


 Thực hiện phép nhân, rút gọn rồi tính giá trị của biểu thức:

LG a.

\(x(x - y) + y(x + y)\)  tại \(x = -6\) và \(y = 8\);

Phương pháp giải:

Áp dụng:

- Quy tắc nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức ta nhân đơn thức với từng số hạng của đa thức rồi cộng các tích với nhau.

- Sau khi rút gọn ta thay các giá trị tương ứng của \(x\) và \(y\) để tìm giá trị của biểu thức đó.

Lời giải chi tiết:

\(\eqalign{
& x\left( {x - y} \right) + y\left( {x + y} \right) \cr 
& = x.x + x.( - y) + y.x + y.y \cr 
& = {x^2}-xy + yx + {y^2} \cr 
& = {x^2} + {y^2} \cr} \)

Với \(x = -6, y = 8\) biểu thức có giá trị là \({\left( { - 6} \right)^2} + {8^2} = 36 + 64 = 100\)


LG b.

\(x({x^{2}} - {\rm{ }}y) - {x^{2}}\left( {x{\rm{ }} + {\rm{ }}y} \right) + y{\rm{ }}({x^2}-{\rm{ }}x) \)    tại \(x = \dfrac{1}{2}\) và \(y = -100\).

Phương pháp giải:

Áp dụng:

- Quy tắc nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức ta nhân đơn thức với từng số hạng của đa thức rồi cộng các tích với nhau.

- Sau khi rút gọn ta thay các giá trị tương ứng của \(x\) và \(y\) để tìm giá trị của biểu thức đó.

Lời giải chi tiết:

\(\eqalign{
& x({x^{2}} - {\rm{ }}y) - {x^{2}}\left( {x{\rm{ }} + {\rm{ }}y} \right) + y{\rm{ }}({x^2}-{\rm{ }}x) \cr 
& = x.{x^2} + x.( - y) + ( - {x^2}).x + ( - {x^2}).y + y.{x^2} + y.( - x) \cr 
& = {\rm{ }}{x^3}-{\rm{ }}xy{\rm{ }}-{\rm{ }}{x^3}-{\rm{ }}{x^2}y{\rm{ }} + {\rm{ }}y{x^2} - {\rm{ }}yx \cr 
& = \left( {{x^3} - {x^3}} \right) + \left( { - xy - yx} \right) + \left( { - {x^2}y + y{x^2}} \right) \cr 
& = - 2xy \cr} \)

Với \(x = \dfrac{1}{2}, y = -100\) biểu thức có giá trị là \(-2 . \dfrac{1}{2} . (-100) = 100\).


Bài học bổ sung


Bài học liên quan