Lý thuyết nhân đơn thức với đa thức

Muốn nhân một đơn thức với một đa thức ta nhân đơn thức với từng số hạng của đa thức rồi cộng các tích với nhau.


1. Quy tắc nhân đơn thức với đa thức

Muốn nhân một đơn thức với một đa thức ta nhân đơn thức với từng số hạng của đa thức rồi cộng các tích với nhau.

Tổng quát:

Cho \(A, B, C, D\) là các đơn thức, ta có: \(A(B + C - D) = AB + AC - AD.\)

2. Các phép tính về lũy thừa

\({a^n} = a.a...a\,\,\,\left( {a \in\mathbb Q,n \in \mathbb N^*} \right)\)

\({a^o} = 1\,\,\left( {a \ne 0} \right)\)

\({a^n}.{a^m} = {a^{n{\text{ }} + {\text{ }}m}}\)

\({a^n}:{a^m} = {a^{n - m}}\,\,\left( {n \geqslant m} \right)\)

\({({a^m})^n} = {a^{m.n}}\)


Bài học bổ sung


Bài học liên quan