Bài 21 trang 12 SGK Toán 8 tập 1
Giải bài 21 trang 12 SGK Toán 8 tập 1. Viết các đa thức sau dưới dạng bình phương của một tổng
Đề bài
Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a) \(9{x^2}-6x + 1\);
b) \({\left( {2x{\rm{ }} + {\rm{ }}3y} \right)^2} + 2.\left( {2x + 3y} \right) + 1\).
Hãy nêu một đề bài tương tự.
Phương pháp giải - Xem chi tiết
Áp dụng bình phương của một tổng, bình phương của một hiệu.
\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
Lời giải chi tiết
a) \(9{x^2}-6x + 1 = {\left( {3x} \right)^2}-2.3x.1 + {1^2}\) \( = {\left( {3x-1} \right)^2}\)
Hoặc
\(9{x^2}-6x + 1 = 1-6x + 9{x^2} \) \(= {1^2} - 2.1.3x + {\left( {3x} \right)^2} = {\left( {1-3x} \right)^2}\)
b) \({\left( {2x{\rm{ }} + {\rm{ }}3y} \right)^2} + 2.\left( {2x + 3y} \right) + 1 \) \(= {\left( {2x + 3y} \right)^2} + 2.\left( {2x + 3y} \right).1 + {1^2}\)
Đặt \(A=2x+3y\); \(B=1\)
Khi đó đa thức được viết lại như sau:
\( {\left( {2x + 3y} \right)^2} + 2.\left( {2x + 3y} \right).1 + {1^2}\) \(= {A^2} + 2AB + {B^2} = {\left( {A + B} \right)^2}\)
Hay:
\({\left( {2x{\rm{ }} + {\rm{ }}3y} \right)^2} + 2.\left( {2x + 3y} \right) + 1 \)
\(= {\left( {2x + 3y} \right)^2} + 2.\left( {2x + 3y} \right).1 + {1^2}\)
\( = {\left[ {\left( {2x{\rm{ }} + {\rm{ }}3y} \right) + 1} \right]^2} = {\left( {2x{\rm{ }} + {\rm{ }}3y + 1} \right)^2}\)
Đề bài tương tự. Chẳng hạn:
\(1 + 2\left( {x + 2y} \right) + {\left( {x + 2y} \right)^2}\)
\(4{x^2}-12x + 9\)…
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 21 trang 12 SGK Toán 8 tập 1 timdapan.com"