Đề kiểm tra 15 phút - Đề số 2 - Bài 6 - Chương 2 - Đại số 8

Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 6 - Chương 2 - Đại số 8


Đề bài

Bài 1. Trừ các phân thức:

a) \({{2x} \over {x - 4}} - {{5x - 2} \over {{x^2} - 16}}\)

b) \({{2x + 8} \over {{x^2} - 4x + 4}} - {7 \over {x - 2}}\)

c) \(x - {{xy} \over {x + y}} - {{{x^3}} \over {{x^2} - {y^2}}}.\)

Bài 2. Chứng minh rằng: \({{3{a^2} + 3} \over {{a^3} - 1}} - {{a - 1} \over {{a^2} + a + 1}} + {2 \over {1 - a}} = 0.\)

Lời giải chi tiết

Bài 1.

a) \(MTC = {x^2} - 16 = \left( {x - 4} \right)\left( {x + 4} \right).\)

Vậy \({{2x} \over {x - 4}} - {{5x - 2} \over {{x^2} - 16}} = {{2x\left( {x + 4} \right) - \left( {5x - 2} \right)} \over {{x^2} - 16}}\)

\( = {{2{x^2} + 8x - 5x + 2} \over {{x^2} - 16}} = {{2{x^2} + 3x + 2} \over {{x^2} - 16}}.\)

b) \(MTC = {x^2} - 4x + 4 = {\left( {x - 2} \right)^2}.\)

Vậy \({{2x + 8} \over {{x^2} - 4x + 4}} - {7 \over {x - 2}} = {{2x + 8 - 7\left( {x - 2} \right)} \over {{{\left( {x - 2} \right)}^2}}}\)

\( = {{2x + 8 - 7x + 14} \over {{{\left( {x - 2} \right)}^2}}} = {{22 - 5x} \over {{{\left( {x - 2} \right)}^2}}}.\)

c) \(MTC = {x^2} - 4x + 4 = {\left( {x - 2} \right)^2}.\)

Vậy \({{2x + 8} \over {{x^2} - 4x + 4}} - {7 \over {x - 2}} = {{2x + 8 - 7\left( {x - 2} \right)} \over {{{\left( {x - 2} \right)}^2}}}\)

\( = {{2x + 8 - 7x + 14} \over {{{\left( {x - 2} \right)}^2}}} = {{22 - 5x} \over {{{\left( {x - 2} \right)}^2}}}\) .

c) \(MTC = {x^2} - {y^2} = \left( {x - y} \right)\left( {x + y} \right).\)

Vậy \(x - {{xy} \over {x + y}} - {{{x^3}} \over {{x^2} - {y^2}}} = {{x\left( {{x^2} - {y^2}} \right) - xy\left( {x - y} \right) - {x^3}} \over {{x^2} - {y^2}}}\)

\( = {{{x^2} - x{y^2} - {x^2}y + x{y^2} - {x^3}} \over {{x^2} - {y^2}}} = {{ - {x^2}y} \over {{x^2} - {y^2}}} =  - {{{x^2}y} \over {{x^2} - {y^2}}}.\)

Bài 2. Biến đổi vế trái (VT), ta được:

\(MTC = {a^3} - 1 = \left( {a - 1} \right)\left( {{a^2} + a + 1} \right)\)

\(VT = {{3{a^2} + 3 - {{\left( {a - 1} \right)}^2} - 2\left( {{a^2} + a + 1} \right)} \over {{a^3} - 1}}\)

\( = {{3{a^2} + 3 - {a^2} + 2a - 1 - 2{a^2} - 2a - 2} \over {{a^3} - 1}} = 0 = VP\).



Bài học liên quan

Từ khóa phổ biến