Đề kiểm tra 15 phút - Đề số 4 - Bài 9 - Chương 1 - Đại số 8

Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 9 - Chương 1 - Đại số 8


Đề bài

Bài 1. Phân tích các đa thức sau thành nhân tử:

a) \({x^3} + 2{x^2}y + x{y^2} - 4x\)

b) \(8{a^3} + 4{a^2}b - 2a{b^2} - {b^3}\)

c) \({a^3} - {b^3} + 2b - 2a.\)

Bài 2. Tìm x, biết: \({x^2} +  4x + 3 = 0.\)

Lời giải chi tiết

Bài 1.

a) \({x^3} + 2{x^2}y + x{y^2} - 4x \)

\(= x\left( {{x^2} + 2xy + {y^2} - 4} \right) \)

\(= x\left[ {{{\left( {x + y} \right)}^2} - 4} \right]\)

\( = x\left( {x + y + 2} \right)\left( {x + y - 2} \right).\)

b) \(8{a^3} + 4{a^2}b - 2a{b^2} - {b^3} \)

\(= \left( {8{a^3} - {b^3}} \right) + \left( {4{a^2}b - 2a{b^2}} \right)\)

\( = \left( {2a - b} \right)\left( {4{a^2} + 2ab + {b^2}} \right) + 2ab\left( {2a - b} \right)\)

\( = \left( {2a - b} \right)\left( {4{a^2} + 2ab + {b^2} + 2ab} \right)\)

\(= \left( {2a - b} \right){\left( {2a + b} \right)^2}\)

c) \({a^3} - {b^3} + 2b - 2a \)

\(= \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) - 2\left( {a - b} \right)\)

\( = \left( {a - b} \right)\left( {{a^2} + ab + {b^2} - 2} \right).\)

Bài 2.

\({x^2} + 4x + 3 = {x^2} + 3x + x + 3 \)

\(= x\left( {x + 3} \right) + \left( {x + 3} \right)\)

\(= \left( {x + 3} \right)\left( {x + 1} \right)\)

Vậy \(\left( {x + 3} \right)\left( {x + 1} \right) = 0\)

\(\Rightarrow x + 3 = 0\) hoặc \(x + 1 = 0\)

\( \Rightarrow x =  - 3\) hoặc \(x =  - 1.\)



Bài học liên quan

Từ khóa phổ biến