Bài 53 trang 24 SGK Toán 8 tập 1

Giải bài 53 trang 24 SGK Toán 8 tập 1. Phân tích các đa thức sau thành nhân tử


Phân tích các đa thức sau thành nhân tử:

LG a.

\(x^2– 3x + 2\);

(Gợi ý: Ta không áp dụng ngay các phương pháp đã học để phân tích nhưng nếu tách hạng tử \(-3x = - x – 2x\) thì ta có \(x^2– 3x + 2 = x^2– x – 2x + 2\) và từ đó dễ dàng phân tích tiếp.

Cũng có thể tách \(2 = - 4 + 6\), khi đó ta có \(x^2– 3x + 2 = x^2– 4 – 3x + 6\), từ đó dễ dàng phân tích tiếp)

Phương pháp giải:

Áp dụng phương pháp: tách, nhóm, đặt nhân tử chung.

Lời giải chi tiết:

\(x^2– 3x + 2 =  x^2- x - 2x + 2 \)

\(=  (x^2- x)+( - 2x + 2)\)

\(= x(x - 1) - 2(x - 1) \)

\(= (x - 1)(x - 2)\)

Cách 2:

\(x^2– 3x + 2 = x^2– 3x - 4 + 6\)

\(= (x^2- 4)+( - 3x + 6)\)

\(= (x^2- 2^2)+( - 3x + 6)\)

\(= (x - 2)(x + 2) - 3(x -2)\)

\( = (x - 2)(x + 2 - 3)\)

\(= (x - 2)(x - 1)\)


LG b.

\(x^2+ x – 6\);

Phương pháp giải:

Áp dụng phương pháp: tách, nhóm, đặt nhân tử chung.

Lời giải chi tiết:

\(x^2+ x – 6\)

Tách \(x=3x-2x\) ta được:

\(x^2+ x - 6 = x^2+ 3x - 2x - 6\)

                  \(= (x^2+ 3x)+( - 2x - 6)\)

                  \(= x(x + 3) - 2(x + 3)\)

                  \(= (x + 3)(x - 2)\).


LG c.

 \(x^2+ 5x + 6\).

Phương pháp giải:

Áp dụng phương pháp: tách, nhóm, đặt nhân tử chung.

Lời giải chi tiết:

\(x^2+ 5x + 6\)

Tách \(5x=2x+3x\) ta được:

\(x^2+ 5x + 6 = x^2+ 2x + 3x + 6\)

                      \(= (x^2+ 2x )+ (3x + 6)\)

                      \(= x(x + 2) + 3(x + 2)\)

                      \(= (x + 2)(x + 3)\)



Bài học liên quan

Từ khóa phổ biến