Bài 68 trang 31 SGK Toán 8 tập 1

Giải bài 68 trang 31 SGK Toán 8 tập 1. Áp dụng hằng đẳng thức đáng nhớ


Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia:

LG a.

\(({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {x{\rm{ }} + {\rm{ }}y} \right)\);

Phương pháp giải:

- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.

- Áp dụng các hằng đẳng thức

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

\({A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\)

Lời giải chi tiết:

 \(({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {x{\rm{ }} + {\rm{ }}y} \right)\)

\(= {\left( {x{\rm{ }} + {\rm{ }}y} \right)^2}:\left( {x{\rm{ }} + {\rm{ }}y} \right) \)

\(= x{\rm{ }} + {\rm{ }}y\).


LG b.

\((125{x^3} + {\rm{ }}1){\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right)\);

Phương pháp giải:

- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.

- Áp dụng các hằng đẳng thức

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

\({A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\)

Lời giải chi tiết:

\((125{x^3} + {\rm{ }}1){\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} \)

\(= {\rm{ }}[{\left( {5x} \right)^3} + 1^3]{\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right)\)

\( = (5x + 1)[{(5x)^2} - 5x.1 + {1^2}]:(5x + 1)\)

\( = (5x + 1)(25{x^2} - 5x + 1):(5x + 1)\)

\(= 25{x^2} - 5x + 1\)


LG c.

\(({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {y{\rm{ }}-{\rm{ }}x} \right)\).

Phương pháp giải:

- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.

- Áp dụng các hằng đẳng thức

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

\({A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\)

Lời giải chi tiết:

\(({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}){\rm{ }}:{\rm{ }}\left( {y{\rm{ }}-{\rm{ }}x} \right){\rm{ }}\)

\(= {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}y} \right)^2}:{\rm{ }}\left[ { - \left( {x{\rm{ }}-{\rm{ }}y} \right)} \right]{\rm{ }}\)

\(= {\rm{ }} - {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}y} \right){\rm{ }} = {\rm{ }}y{\rm{ }}-{\rm{ }}x\)


Bài học bổ sung


Bài học liên quan

Từ khóa phổ biến

bài 68 trang 31 sgk toán 8 tập 1 ai6