Bài 67 trang 31 SGK Toán 8 tập 1

Giải bài 67 trang 31 SGK Toán 8 tập 1. Sắp xếp các đa thức theo lũy thừa giảm dần của biến rồi làm phép chia


Sắp xếp các đa thức theo lũy thừa giảm dần của biến rồi làm phép chia:

LG a.

\(({x^3}-{\rm{ }}7x{\rm{ }} + {\rm{ }}3{\rm{ }}-{\rm{ }}{x^2}){\rm{ }}:{\rm{ }}\left( {x{\rm{ }}-{\rm{ }}3} \right)\); 

Phương pháp giải:

- Sắp xếp đa thức theo lũy thừa giảm dần của biến.

- Áp dụng qui tắc chia hai đa thức một biến đã sắp xếp.

Lời giải chi tiết:

\(({x^3}-{\rm{ }}7x{\rm{ }} + {\rm{ }}3{\rm{ }}-{\rm{ }}{x^2}){\rm{ }}:{\rm{ }}\left( {x{\rm{ }}-{\rm{ }}3} \right)\)


LG b.

\((2{x^4}-{\rm{ }}3{x^3}-{\rm{ }}3{x^2}-{\rm{ }}2{\rm{ }} + {\rm{ }}6x){\rm{ }}:{\rm{ }}({x^2}-{\rm{ }}2)\).

Phương pháp giải:

- Sắp xếp đa thức theo lũy thừa giảm dần của biến.

- Áp dụng qui tắc chia hai đa thức một biến đã sắp xếp.

Lời giải chi tiết:

\((2{x^4}-{\rm{ }}3{x^3}-{\rm{ }}3{x^2}-{\rm{ }}2{\rm{ }} + {\rm{ }}6x){\rm{ }}:{\rm{ }}({x^2}-{\rm{ }}2)\)



Bài học liên quan

Từ khóa phổ biến