Đề kiểm tra 15 phút - Đề số 1 - Bài 4 - Chương 2 - Đại số 8

Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 4 - Chương 2 - Đại số 8


Đề bài

Bài 1. Tìm mẫu thức chung: \(  {5 \over {4x - 4}};{{4x} \over {1 - {x^2}}};{1 \over {3{x^2} + 3x}}\)   

Bài 2. Quy đồng mẫu thức các phân thức:

a) \(  {2 \over {9{x^2} - 1}}\)   và \(  {{4x} \over {1 - 3x}}\)   

b) \(  {3 \over {x + 2}};{{x + 1} \over {{x^3} + 8}};{{x + 2} \over {{x^2} - 2x + 4}}\)   

Lời giải chi tiết

Bài 1. Ta có: \(  4x - 4 = 4\left( {x - 1} \right);\)

\({x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right);\)   

\(  3{x^2} + 3x = 3x\left( {x + 1} \right)\)   

MTC: \(  12x\left( {x - 1} \right)\left( {x + 1} \right)\)   

Bài 2.

a) \(  MTC = 9{x^2} - 1 = \left( {3x - 1} \right)\left( {3x + 1} \right)\)   

Ta có: \(  {{4x} \over {1 - 3x}} = {{ - 4x} \over {3x - 1}} = {{ - 4x\left( {3x + 1} \right)} \over {\left( {3x - 1} \right)\left( {3x + 1} \right)}}\)\(\; = {{ - 4x\left( {3x + 1} \right)} \over {9{x^2} - 1}}\)   

b) Ta có: \(  {x^3} + 8 = \left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)\)   

\(  MTC = {x^3} + 8\)   

Vậy: \(  {3 \over {x + 2}} = {{3\left( {{x^2} - 2x + 4} \right)} \over {\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)}} = {{3\left( {{x^2} - 2x + 4} \right)} \over {{x^3} + 8}}\)   

\(  {{x + 2} \over {{x^2} - 2x + 4}} = {{{{\left( {x + 2} \right)}^2}} \over {\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)}} = {{{{\left( {x + 2} \right)}^2}} \over {{x^3} + 8}}\)   



Bài giải liên quan

Bài học liên quan

Từ khóa phổ biến