Câu 2.90 trang 85 sách bài tập Giải tích 12 Nâng cao

Gải các phương trình sau:


Gải các phương trình sau:

LG a

\({4^{x + 1}} - {6.2^{x + 1}} + 8 = 0\)

Lời giải chi tiết:

Đặt \(y = {2^{x + 1}}(y > 0)\), đưa phương trình đã cho về dạng \({y^2} - 6y + 8 = 0\)

Vậy \(x = 0\) và \(x = 1\)


LG b

\({3^{1 + x}} + {3^{1 - x}} = 10\)

Lời giải chi tiết:

Đặt \(y = {3^x}(y > 0)\) ta có     \(3{y^2} - 10y + 3 = 0\)

Vậy \(x =  - 1\) và \(x = 1\)


LG c

\({3^{4x + 8}} - {4.3^{2x + 5}} + 27 = 0\)

Lời giải chi tiết:

\(x =  - {3 \over 2}\) và \(x =  - 1\) 

\({3^{4x + 8}} - {4.3^{2x + 5}} + 27 = 0 \\ \Leftrightarrow {3^{2(2x + 4)}} - {12.3^{2x + 4}} + 27 = 0\)

Đặt \(y = {3^{2x + 4}}(y > 0)\), dẫn đến phương trình  \({y^2} - 12y + 27 = 0\)

Tìm được \(y = 3\) và \(y = 9\) (đều thỏa mãn)

Với \(y = 3\) thì \(y = {3^{2x + 4}} = 3 \Leftrightarrow 2x + 4 = 1\\ \Leftrightarrow x =  - {3 \over 2}\)

Với \(y = 9\) thì \(y = {3^{2x + 4}} = {3^2} \Leftrightarrow 2x + 4 = 2\\ \Leftrightarrow x =  - 1\)


LG d

\({3.25^x} + {2.49^x} = {5.35^x}.\)

Lời giải chi tiết:

\(x = 0\) và \(x = {\log _{{5 \over 7}}}{2 \over 3}\) 

Chia hai vế của phương trình cho \({35^x}\), ta được

                                \(3.{\left( {{5 \over 7}} \right)^x} + 2.{\left( {{7 \over 5}} \right)^x} = 5\)

Đặt \(t = {\left( {{5 \over 7}} \right)^x}(t > 0)\), ta có \(3t + {2 \over t} = 5\) hay \(3{t^2} - 5t + 2 = 0\)

Từ đó tìm được \(t = 1\)  và \(t = {3 \over 2}\) (đều thỏa mãn)

Với \(t = 1\)  ta có \({\left( {{5 \over 7}} \right)^x} = 1\) nên \(x = 0\)

Với \(t = {2 \over 3}\)  ta có \({\left( {{5 \over 7}} \right)^x} = {2 \over 3}\) nên \(x = {\log _{{5 \over 7}}}{2 \over 3}\)



Bài giải liên quan

Bài học liên quan

Từ khóa phổ biến