Bài 9 trang 222 SGK Đại số 10 Nâng cao

Giải và biện luận các phương trình


Giải và biện luận các phương trình

LG a

\({{mx - m - 3} \over {x + 1}} = 1\)

Lời giải chi tiết:

Điều kiện: \(x ≠ 1\)

Ta có:

\({{mx - m - 3} \over {x + 1}} = 1 \Leftrightarrow mx - m - 3 = x + 1\)

\(\Leftrightarrow (m - 1)x = m + 4\)

+ Nếu m ≠ 1 thì \(x = {{m + 4} \over {m - 1}}\).

\(x\ne -1 \Leftrightarrow {{m + 4} \over {m - 1}} \ne  - 1 \) \(\Leftrightarrow m + 4 \ne  1-m \) \(\Leftrightarrow m \ne  - {3 \over 2}\)

+ Nếu m = 1: phương trình vô nghiệm

Vậy:

Với m ≠ 1  và \(m \ne  - {3 \over 2}:\,\,\,S = {\rm{\{ }}{{m + 4} \over {m - 1}}{\rm{\} }}\)

Với m = 1 hoặc \(m =  - {3 \over 2}:\,\,\,\,S = \emptyset \)


LG b

\(|(m + 1)x – 3 | = |x + 2|\)

Lời giải chi tiết:

Ta có:

\(|(m + 1)x – 3 | = |x + 2| \)

\( \Leftrightarrow \left[ \matrix{
(m + 1)x - 3 = x + 2 \hfill \cr 
(m + 1)x - 3 = - x - 2 \hfill \cr} \right. \) \(\Leftrightarrow \left[ \matrix{
mx = 5 \,\,(1)\hfill \cr 
(m + 2)x = 1 \,\,(2)\hfill \cr} \right.\)

+) Nếu \(m = 0\) thì (1) là 0x=5(vô nghiệm)

(2) là 2x=1\( \Leftrightarrow x = \dfrac{1}{2}\) nên phương trình có nghiệm \(x = \dfrac{1}{2}\).

+) Nếu \(m =  - 2\) thì (2) là 0x=1 (vô nghiệm)

(1) là \( - 2x = 5 \Leftrightarrow x =  - \dfrac{5}{2}\)

Nên phương trình có nghiệm \(x =  - \dfrac{5}{2}\)

+) Nếu \(m \ne 0,m \ne  - 2\) thì \(\left[ \begin{array}{l}x = \dfrac{5}{m}\\x = \dfrac{1}{{m + 2}}\end{array} \right.\)

Vậy \(m = 0;\,\,S = {\rm{\{ }}{1 \over 2}{\rm{\} }}\)

+ Với m = -2; \(S = {\rm{\{  - }}{5 \over 2}{\rm{\} }}\)

+ Với m ≠ 0 và m ≠ -2 thì \(S = {\rm{\{ }}{5 \over m};\,\,{1 \over {m + 2}}{\rm{\} }}\)


LG c

\((mx + 1)\sqrt {x - 1}  = 0\)

Lời giải chi tiết:

Điều kiện: x ≥ 1

\((mx + 1)\sqrt {x - 1} = 0 \) \(\Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr 
mx + 1 = 0\,\,\,\,\,\,\,\,\,\,\,\,(1) \hfill \cr} \right.\,\,\,\,\)

+ Với m = 0 thì phương trình (1) vô nghiệm. Do đó: S = {1}

+ Với m ≠ 0 thì (1) có nghiệm là \(x =  - {1 \over m}\)

\( x\ge 1 \Leftrightarrow  - {1 \over m} \ge 1 \Leftrightarrow {{m + 1} \over m} \le 0\) \( \Leftrightarrow  - 1 \le m < 0\) 

Vậy:  với m < -1 hoặc m ≥ 0 thì S = {1}

-1 ≤ m < 0 thì \(S = {\rm{\{ }}1, - {1 \over m}{\rm{\} }}\)



Bài học liên quan

Từ khóa phổ biến