Bài 9 trang 147 SGK Giải tích 12

Giải bài 9 trang 147 SGK Giải tích 12. Giải các phương trình sau:


Giải các phương trình sau:

LG a

a) \({13^{2x + 1}} - {13^x} - 12 = 0\)

Phương pháp giải:

+) Tìm điều kiện xác định.

+) Sử dụng các phương pháp giải phương trình logarit để giải phương trình: đổi biến, mũ hóa, hàm số.......

+)  \({\log _a}f\left( x \right) = b \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) > 0\\f\left( x \right) = {a^b}\end{array} \right..\)

+) \({\left( a \right)^{f\left( x \right)}} = b \Leftrightarrow f\left( x \right) = {\log _a}b.\) 

Lời giải chi tiết:

Phương trình: \( \Leftrightarrow {13.13^{2x}} - {13^x} - 12 = 0.\)

Đặt  \(t = 13^x > 0\) ta được phương trình:

\(13t^2 – t – 12 = 0  ⇔ (t – 1)(13t + 12) = 0\)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
t - 1 = 0\\
13t + 12 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
t = 1\;\;\left( {tm} \right)\\
t = - \dfrac{{12}}{{13}}\;\;\left( {ktm} \right)
\end{array} \right.\\
\Leftrightarrow {13^x} = 1 \Leftrightarrow x = 0.
\end{array}\)

Vậy phương trình có nghiệm \(x=0.\)


LG b

b) \(({3^x} + {\rm{ }}{2^x})({3^x} + {\rm{ }}{3.2^x}){\rm{ }} = {\rm{ }}{8.6^x}\)

Lời giải chi tiết:

Chia cả hai vế phương trình cho \(9^x\) ta được phương trình tương đương

\(\dfrac{{{3^x} + {2^x}}}{{{3^x}}}.\dfrac{{{3^x} + {{3.2}^x}}}{{{3^x}}} = 8.\dfrac{{{6^x}}}{{{9^x}}}\) \( \Leftrightarrow \left[ {1 + {{\left( {\dfrac{2}{3}} \right)}^x}} \right].\left[ {1 + 3.{{\left( {\dfrac{2}{3}} \right)}^x}} \right] = 8.{\left( {\dfrac{2}{3}} \right)^x}\)

Đặt \(t = {({2 \over 3})^x} (t > 0)\) , ta được phương trình:

\(\left( {1 + t} \right)\left( {1 + 3t} \right) = 8t\) \( \Leftrightarrow 1 + 4t + 3{t^2} - 8t = 0\) \( \Leftrightarrow 3{t^2} - 4t + 1 = 0 \) \(\Leftrightarrow \left( {t - 1} \right)\left( {3t - 1} \right) = 0 \) \(\Leftrightarrow \left[ \begin{array}{l}
t = 1\\
t = \dfrac{1}{3}
\end{array} \right.\)

Với \(\displaystyle t = {1 \over 3}\) ta được nghiệm \(\displaystyle x = {\log _{{2 \over 3}}}{1 \over 3}\)

Với \(t = 1\) ta được nghiệm \(x = 0.\)

Vậy phương trình có hai nghiệm: \(x=0\) và \(\displaystyle x= {\log _{{2 \over 3}}}{1 \over 3}. \)


LG c

c) \({\log _{\sqrt 3 }}(x - 2).{\log _5}x = 2{\log _3}(x - 2)\)

Lời giải chi tiết:

Điều kiện: \(x > 2\)

\(\eqalign{
& Pt \Leftrightarrow 2lo{g_3}(x - 2).lo{g_5}x = 2lo{g_3}(x - 2) \cr 
& \Leftrightarrow 2lo{g_3}(x - 2)({\log _5}x - 1) = 0 \cr} \)

\(\Leftrightarrow\left[ \matrix{{\log _3}(x - 2) = 0 \hfill \cr lo{g_5}x = 1 \hfill \cr}  \right. \)

\( \Leftrightarrow \left[ \begin{array}{l}
x - 2 = 1\\
x = 5
\end{array} \right.\)

\(\Leftrightarrow \left[ \matrix{x = 3 (tm) \hfill \cr x = 5 (tm) \hfill \cr}  \right.\)

Vậy phương trình có hai nghiệm phân biệt \(x=3\) và \(x=5.\)


LG d

d) \(\log_2^2x{\rm{ }}-{\rm{ }}5\log_2x{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0.\)

Lời giải chi tiết:

Điều kiện: \(x > 0\)

\(\eqalign{
& \log _2^2x - 5{\log _2}x + 6 = 0 \cr 
& \Leftrightarrow ({\log _2}x - 2)({\log _2}x - 3) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
{\log _2}x = 2 \hfill \cr 
{\log _2}x = 3 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 4 (tm)\hfill \cr 
x = 8  (tm)\hfill \cr} \right. \cr} \)

Vậy phương trình có hai nghiệm phân biệt: \(x=4\) và \(x=8.\)

 

Bài giải tiếp theo
Bài 10 trang 147 SGK Giải tích 12
Bài 11 trang 147 SGK Giải tích 12
Bài 12 trang 147 SGK Giải tích 12
Bài 13 trang 148 SGK Giải tích 12
Bài 14 trang 148 SGK Giải tích 12
Bài 15 trang 148 SGK Giải tích 12
Câu hỏi 1 trang 145 SGK Giải tích 12
Câu hỏi 2 trang 145 SGK Giải tích 12
Câu hỏi 3 trang 145 SGK Giải tích 12
Câu hỏi 4 trang 145 SGK Giải tích 12

Video liên quan



Bài học liên quan

Từ khóa