Bài 12 trang 147 SGK Giải tích 12

Giải Bài 12 trang 147 SGK Giải tích 12. Tính các tích phân sau bằng phương pháp đổi biến số


Tính các tích phân sau bằng phương pháp đổi biến số:

LG a

a) \(\displaystyle \int\limits_0^{{\pi  \over 24}} {\tan ({\pi  \over 4} - 4x)dx} \) (đặt \(u = \cos ({\pi  \over 3} - 4x)\) )

Phương pháp giải:

Đặt \(\displaystyle u = \cos ({\pi  \over 3} - 4x)\)

Lời giải chi tiết:

Ta có: \(\displaystyle I=\int\limits_0^{\frac{\pi }{{24}}} {\tan \left( {\frac{\pi }{3} - 4x} \right)dx}  \) \(\displaystyle = \int\limits_0^{\frac{\pi }{{24}}} {\frac{{\sin \left( {\frac{\pi }{3} - 4x} \right)}}{{\cos \left( {\frac{\pi }{3} - 4x} \right)}}dx} \)

Đặt \(u = \cos \left( {\dfrac{\pi }{3} - 4x} \right)\) \( \Leftrightarrow du = 4\sin \left( {\dfrac{\pi }{3} - 4x} \right)dx\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow u = \frac{1}{2}\\x = \frac{\pi }{{24}} \Rightarrow u =\frac{{\sqrt 3 }}{2}\end{array} \right.\)

Khi đó: \(\displaystyle I = \int\limits_{\frac{1}{2}}^{\frac{{\sqrt 3 }}{2}} {\frac{{du}}{{4u}}}  = \left. {\frac{1}{4}\ln \left| u \right|} \right|_{\frac{1}{2}}^{\frac{{\sqrt 3 }}{2}} \) \(\displaystyle = \frac{1}{4}\left( {\ln \frac{{\sqrt 3 }}{2} - \ln \frac{1}{2}} \right) = \frac{1}{4}\ln \sqrt 3 \)


LG b

b) \(\displaystyle \int\limits_{{{\sqrt 3 } \over 5}}^{{3 \over 5}} {{{dx} \over {9 + 25{x^2}}}} \) (đặt \(\displaystyle x = {3 \over 5}\tan t\) )

Phương pháp giải:

Đặt \(\displaystyle x = {3 \over 5}\tan t\)

Lời giải chi tiết:

Đặt \(x = \dfrac{3}{5}\tan t \) \( \displaystyle \Leftrightarrow dx = \frac{3}{{5{{\cos }^2}t}}dt = \frac{3}{5}\left( {{{\tan }^2}t + 1} \right)dt\)

Đổi cận: \(\left\{ \begin{array}{l}x = \frac{{\sqrt 3 }}{5} \Rightarrow t = \frac{\pi }{6}\\x = \frac{3}{5} \Rightarrow t = \frac{\pi }{4}\end{array} \right.\)

\(\displaystyle I = \int\limits_{\frac{{\sqrt 3 }}{5}}^{\frac{3}{5}} {\frac{{dx}}{{9 + 25{x^2}}}} \) \(\displaystyle = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{{3\left( {{{\tan }^2}t + 1} \right)dt}}{{5\left( {9 + 25.\frac{9}{{25}}{{\tan }^2}t} \right)}}} \)

\(\displaystyle I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{{3\left( {{{\tan }^2}t + 1} \right)}}{{5.9\left( {{{\tan }^2}t + 1} \right)}}dt} \) \(\displaystyle = \frac{1}{{15}}\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {dt} = \left. {\frac{t}{{15}}} \right|_{\frac{\pi }{6}}^{\frac{\pi }{4}} = \frac{\pi }{{180}}\)


LG c

c) \(\displaystyle \int\limits_0^{{\pi  \over 2}} {{{\sin }^3}} x{\cos ^4}xdx\) (đặt \(u = \cos x\))

Phương pháp giải:

Đặt \(u = \cos x\)

Lời giải chi tiết:

Ta có: \(I = \int\limits_0^{\frac{\pi }{2}} {{{\sin }^3}x{{\cos }^4}xdx}  \) \(= \int\limits_0^{\frac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right){{\cos }^4}x\sin xdx} \)

Đặt \(u = \cos x \Rightarrow du =  - \sin xdx\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Leftrightarrow u = 1\\x = \frac{\pi }{2} \Rightarrow u = 0\end{array} \right.\)

\(\displaystyle \Rightarrow I = - \int\limits_1^0 {\left( {1 - {u^2}} \right){u^4}du} \) \(= \int\limits_0^1 {\left( {{u^4} - {u^6}} \right)du}\)

\(\displaystyle I = \left. {\left( {\frac{{{u^5}}}{5} - \frac{{{u^7}}}{7}} \right)} \right|_0^1 = \frac{2}{{35}}\)


LG d

d) \(\displaystyle \int\limits_{{{ - \pi } \over 4}}^{{\pi  \over 4}} {{{\sqrt {1 + \tan x} } \over {{{\cos }^2}x}}} dx\) (đặt \(u = \sqrt {1 + \tan x} \) )

Phương pháp giải:

Đặt \(u = \sqrt {1 + \tan x} \)

Lời giải chi tiết:

Đặt \(u = \sqrt {1 + \tan x}  \Leftrightarrow {u^2} = 1 + \tan x \) \(\displaystyle \Leftrightarrow 2udu = \frac{1}{{{{\cos }^2}x}}dx\)

Đổi cận: \(\left\{ \begin{array}{l}x = - \frac{\pi }{4} \Rightarrow u = 0\\x = \frac{\pi }{4} \Rightarrow u = \sqrt 2 \end{array} \right.\)

\( \Rightarrow I = \int\limits_0^{\sqrt 2 } {u.2udu}  = 2\int\limits_0^{\sqrt 2 } {{u^2}du} \) \(\displaystyle = 2\left. {\frac{{{u^3}}}{3}} \right|_0^{\sqrt 2 } = \frac{2}{3}.2\sqrt 2  = \frac{{4\sqrt 2 }}{3}\)

 



Bài học liên quan

Từ khóa phổ biến