Bài 1.91 trang 29 SBT Giải tích 12 Nâng cao

Giải bài 1.91 trang 29 sách bài tập Giải tích 12 Nâng cao. Cho hàm số ...


Cho hàm số \(y = {{2{x^2} + 3x + 3} \over {x + 1}}\)

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.

Lời giải chi tiết:

Ta có: \(y = \frac{{2{x^2} + 3x + 3}}{{x + 1}} = 2x + 1 + \frac{2}{{x + 1}}\)

+) TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

+) Chiều biến thiên:

\(\mathop {\lim }\limits_{x \to  - {1^ + }} y =  + \infty ,\mathop {\lim }\limits_{x \to  - {1^ - }} y =  - \infty \) nên TCĐ \(x =  - 1\).

\(\mathop {\lim }\limits_{x \to  \pm \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to  \pm \infty } \left( {\frac{2}{{x + 1}}} \right) = 0\) nên TCX: \(y = 2x + 1\).

Ta có:

\(\begin{array}{l}y' = 2 - \frac{2}{{{{\left( {x + 1} \right)}^2}}}\\y' = 0 \Leftrightarrow 2 - \frac{2}{{{{\left( {x + 1} \right)}^2}}} = 0\\ \Leftrightarrow {\left( {x + 1} \right)^2} = 1\\ \Leftrightarrow \left[ \begin{array}{l}x + 1 = 1\\x + 1 =  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 2\end{array} \right.\end{array}\)

BBT:

+) Đồ thị:


LG b

Dựa vào đồ thị, hãy biện luận số giao điểm của đường thẳng \(y = m(x + 1) + 3\) và đường cong (C), tùy theo các giá trị của m.

Lời giải chi tiết:

Đường thẳng y = m(x + 1) + 3 có hệ số góc m, đi qua điểm I(-1;3) nằm trên tiệm cận đứng x = -1 của (C).

- Với m < 0 đường thẳng không cắt đường cong (C)

- Với m = 0 đường thẳng tiếp xúc với (C) tại điểm (0;3)

- Với 0 < m < 2 đường thẳng cắt (C) tại hai điểm (cả hai giao điểm đều phải thuộc nhánh phải của (C)

- Với m = 2, đường thẳng song song với tiệm cận xiên của (C); đường thẳng cắt (C) tại một điểm.

- Với m > 2, đường thẳng cắt (C) tại hai điểm thuộc hai nhánh của (C).

Bài giải tiếp theo



Bài học liên quan

Từ khóa phổ biến