Bài 1.62 trang 19 SBT Đại số và Giải tích 11 Nâng cao
Giải bài 1.62 trang 19 sách bài tập Đại số và Giải tích 11 Nâng cao. Tìm các nghiệm thuộc đoạn...
Đề bài
Tìm các nghiệm thuộc đoạn \(\left[ {0;2\pi } \right]\) của phương trình
\(\sin \left( {2x + {{9\pi } \over 2}} \right) - 3\cos \left( {x - {{15\pi } \over 2}} \right) \)\(= 1 + 2\sin x\)
Tính giá trị gần đúng, chính xác đến phần trăm của các nghiệm đó.
Lời giải chi tiết
Do \(\sin \left( {2x + {{9\pi } \over 2}} \right) = \cos 2x\) và \(\cos \left( {x - {{15\pi } \over 2}} \right) = - \sin x\) nên phương trình đã cho có thể viết thành:
\(\cos 2x + 3\sin x = 1 + 2\sin x\)
\(\begin{array}{l}
\Leftrightarrow 1 - 2{\sin ^2}x + 3\sin x - 1 - 2\sin x = 0\\
\Leftrightarrow - 2{\sin ^2}x + \sin x = 0\\
\Leftrightarrow \sin x\left( { - 2\sin x + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x = 0\\
\sin x = \frac{1}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = k\pi \\
x = \frac{\pi }{6} + k2\pi \\
x = \frac{{5\pi }}{6} + k2\pi
\end{array} \right.
\end{array}\)
Trên đoạn \(\left[ {0;2\pi } \right],\) phương trình này có các nghiệm \(x = 0,x = \pi \approx 3,14;\) \(x = 2\pi \approx 6,28;x = {\pi \over 6} \approx 0,52\) và \(x = {{5\pi } \over 6} \approx 2,62\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.62 trang 19 SBT Đại số và Giải tích 11 Nâng cao timdapan.com"