Bài 1.4 trang 10 SBT Giải tích 12 Nâng cao

Giải bài 1.4 trang 10 sách bài tập Giải tích 12 Nâng cao. Hãy chứng minh rằng ...


Hãy chứng minh rằng

LG a

Hàm số \(y = \sqrt {2x - {x^2}} \) nghịch biến trên đoạn [1;2]

Lời giải chi tiết:

Hàm số liên tục trên đoạn [1;2] và có đạo hàm

\(y' = {{1 - x} \over {\sqrt {2x - {x^2}} }} < 0\) với mọi \(x \in (1,2)\)

Do đó hàm số nghịch biến trên đoạn [1;2]


LG b

Hàm số \(y = \sqrt {{x^2} - 9} \) đồng biến trên nửa khoảng  \({\rm{[}}3; + \infty )\)

Lời giải chi tiết:

Hàm số liên tục trên nửa khoảng  \({\rm{[}}3; + \infty )\) và có đạo hàm

\(y' = {x \over {\sqrt {{x^2} - 9} }} > 0\) với mọi \(x \in (3, + \infty )\)

Do đó hàm dố đồng biến tên nửa khoảng \({\rm{[}}3; + \infty )\)


LG c

Hàm số \(y = x + {4 \over x}\) nghịch biến trên mỗi nửa khoảng [-2;0) và (0;2]

Lời giải chi tiết:

TXĐ: \(x\ne0\)

\(y' = 1 - {4 \over {{x^2}}}\)

\(y' = 0 \Leftrightarrow x =  \pm 2\)

BBT

Từ BBT ta có hàm số \(y = x + {4 \over x}\) nghịch biến trên mỗi nửa khoảng [-2;0) và (0;2]



Bài học liên quan

Từ khóa phổ biến