Bài 1.3 trang 10 SBT Giải tích 12 Nâng cao

Giải bài 1.3 trang 10 sách bài tập Giải tích 12 Nâng cao. Xét chiều biến thiên các hàm số sau:...


Xét chiều biến thiên các hàm số sau:

LG a

\(f(x) = {1 \over 2}{x^4} + {x^3} - x + 5\)

Lời giải chi tiết:

TXĐ: \(D = \mathbb{R}\).

\(f'\left( x \right) = 2{x^3} + 3{x^2} - 1\)

\(\begin{array}{l}
= 2{x^3} + 2{x^2} + {x^2} - 1\\
= 2{x^2}\left( {x + 1} \right) + \left( {x - 1} \right)\left( {x + 1} \right)\\
= \left( {x + 1} \right)\left( {2{x^2} + x - 1} \right)\\
= \left( {x + 1} \right)\left( {2{x^2} + 2x - x - 1} \right)\\
= \left( {x + 1} \right)\left[ {2x\left( {x + 1} \right) - \left( {x + 1} \right)} \right]\\
= {\left( {x + 1} \right)^2}\left( {2x - 1} \right)
\end{array}\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = \frac{1}{2}\end{array} \right.\)

BXD:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;{1 \over 2}} \right)\) và đồng biến trên khoảng \(\left( {{1 \over 2}; + \infty } \right)\)


LG b

\(f(x) = {3 \over 4}{x^4} - 2{x^3} + {3 \over 2}{x^2} - 6x + 11\)

Lời giải chi tiết:

TXĐ: \(D = \mathbb{R}\).

\(\begin{array}{l}f'\left( x \right) = 3{x^3} - 6{x^2} + 3x - 6\\ = 3\left( {{x^3} - 2{x^2} + x - 2} \right)\\  = 3\left[ {{x^2}\left( {x - 2} \right) + \left( {x - 2} \right)} \right]\\= 3\left( {x - 2} \right)\left( {{x^2} + 1} \right)\end{array}\)

\(f'\left( x \right) > 0 \Leftrightarrow x > 2\) nên hàm số đồng biến trên \(\left( {2; + \infty } \right)\).

\(f'\left( x \right) < 0 \Leftrightarrow x < 2\) nên hàm số nghịch biến trên \(\left( { - \infty ;2} \right)\).

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\) và đồng biến trên khoảng \(\left( {2; + \infty } \right)\)


LG c

\(f(x) = {x^3} - {4 \over 5}{x^5} + 8\)

Lời giải chi tiết:

TXĐ: \(D = \mathbb{R}\).

\(f'\left( x \right) = 3{x^2} - 4{x^4}\) \( = {x^2}\left( {3 - 4{x^2}} \right)\)

\(\begin{array}{l}f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = 0\\3 - 4{x^2} = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm \frac{{\sqrt 3 }}{2}\end{array} \right.\end{array}\)

BXD:

Hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ;{{\sqrt 3 } \over 2}} \right)\) và \(\left( {{{\sqrt 3 } \over 2}; + \infty } \right)\), đồng biến trên khoảng \(\left( { - {{\sqrt 3 } \over 2};{{\sqrt 3 } \over 2}} \right)\)


LG d

\(f(x) = 9{x^7} - 7{x^6} + {7 \over 5}{x^5} + 12\)

Lời giải chi tiết:

TXĐ: \(D = \mathbb{R}\)

\(\begin{array}{l}f'\left( x \right) = 63{x^6} - 42{x^5} + 7{x^4}\\ = 7{x^4}\left( {9{x^2} - 6x + 1} \right)\\ = 7{x^4}{\left( {3x - 1} \right)^2} \ge 0,\forall x \in \mathbb{R}\end{array}\)

Vậy hàm số đồng biến trên \(\mathbb{R}\).



Bài học liên quan

Từ khóa phổ biến