Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
1. Các kiến thức cần nhớ
Cho điểm \(I\left( {{x_0};{y_0}} \right),M\left( {x;y} \right)\) đối với hệ tọa độ \(Oxy\)
Công thức chuyển hệ tọa độ trong phép tịnh tiến theo véc tơ \(\overrightarrow {OI} \) là: \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)
Khi đó điểm \(I\left( {0;0} \right),M\left( {X,Y} \right)\) đối với hệ tọa độ \(IXY\)
Cho đường cong \(\left( C \right):y = f\left( x \right)\) trong hệ tọa độ \(Oxy\), khi đó phương trình của \(\left( C \right)\) trong hệ tọa độ \(IXY\) là:
\(Y = f\left( {X + {x_0}} \right) - {y_0}\)
Nếu hàm số \(Y = g\left( X \right)\) là hàm số lẻ (trong hệ tọa độ mới \(IXY\)) thì điểm \(I\left( {{x_0};{y_0}} \right)\) trong hệ tọa độ \(Oxy\) là tâm đối xứng của đồ thị hàm số \(y = f\left( x \right)\)
2. Một số dạng toán thường gặp
Dạng 1: Tìm công thức chuyển hệ tọa độ.
Phương pháp:
- Bước 1: Tính tọa độ điểm \(I\) (nếu cần).
- Bước 2: Viết công thức chuyển hệ tọa độ \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)
Phương pháp:
- Bước 1: Tìm tọa độ điểm \(I\) (nếu cần)
- Bước 2: Viết công thức chuyển hệ tọa độ \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)
- Bước 3: Viết phương trình đường cong đối với hệ tọa độ mới: \(Y = f\left( {X + {x_0}} \right) - {y_0}\)
Phương pháp:
- Bước 1: Tìm tọa độ điểm \(I\): \(\left\{ \begin{array}{l}{x_0} = - \dfrac{d}{c}\\{y_0} = \dfrac{a}{c}\end{array} \right.\)
- Bước 2: Viết công thức chuyển hệ tọa độ \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)
- Bước 3: Viết phương trình đường cong đối hệ tọa độ mới: \(Y = f\left( {X + {x_0}} \right) - {y_0}\).
- Bước 4: Chứng minh \(g\left( { - X} \right) = - g\left( X \right) = - Y\) suy ra hàm số \(Y = g\left( X \right)\) là hàm số lẻ và kết luận.
Phương pháp:
- Bước 1: Tính \(y',y''\), giải phương trình \(y'' = 0\) tìm nghiệm \({x_0} \Rightarrow \) điểm \(I\left( {{x_0};{y_0}} \right)\)
- Bước 2: Viết công thức chuyển hệ tọa độ \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)
- Bước 3: Viết phương trình đường cong đối hệ tọa độ mới: \(Y = f\left( {X + {x_0}} \right) - {y_0}\).
- Bước 4: Chứng minh \(g\left( { - X} \right) = - g\left( X \right) = - Y\) suy ra hàm số \(Y = g\left( X \right)\) là hàm số lẻ và kết luận.
Search google: "từ khóa + timdapan.com" Ví dụ: "Đồ thị của hàm số và phép tịnh tiến hệ tọa độ timdapan.com"