Bài 2 trang 45 SGK Giải tích 12

Giải bài 2 trang 45 SGK Giải tích 12. Nêu cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm


Đề bài

Nêu cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm. Tìm các cực trị của hàm số \(y= {x^4}-2{x^2} + 2.\)

Phương pháp giải - Xem chi tiết

Các quy tắc tìm cực trị của hàm số:

Quy tắc 1:

B1. Tìm tập xác định.

B2. Tính \(f’(x)\). Tìm các điểm tại đó \(f’(x)=0\) hoặc \(f’(x)\) không xác định.

B3. Lập bảng biến thiên.

B4. Từ bảng biến thiên suy ra các điểm cực trị.

Quy tắc 2:

B1. Tìm tập xác định.

B2. Tính \(f’(x)\). Giải phương trình  \(f’(x)=0\) và kí hiệu \(x_i \, \, (i=1,\, 2, \, 3, \, …..)\) là các nghiệm của nó.

B3. Tính \(f’’ (x)\) và \(f’’ (x_i).\)

B4. Nếu \(f’’ (x_i) > 0\) thì \(x_i\) là điểm cực tiểu.

Nếu \(f’’ (x_i) < 0\) thì \(x_i\) là điểm cực đại.

Lời giải chi tiết

Xét hàm số: \(y= {x^4}-2{x^2} + 2\)

Có đạo hàm là: \(y’ = 4x^3– 4x  \Rightarrow y' = 0\)

\(\begin{array}{l}
\Leftrightarrow 4{x^3} - 4x = 0 \Leftrightarrow 4x\left( {{x^2} - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
{x^2} = 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = \pm 1
\end{array} \right..
\end{array}\)

Đạo hàm cấp hai: \(y’’ = 12x^2 – 4\)

Ta có: \(y’’(0) = -4 < 0 ⇒\) điểm  \(x=0\) là điểm cực đại và \(y_{CĐ}=y(0)=2.\)

\(y’’(-1) = 8 > 0; \,  y’’(1) = 8 > 0\)

\(⇒ x=1\) và \(x=-1\) là các điểm cực tiểu,  \(y_{CT}= y( \pm 1)=1\).



Bài học liên quan

Từ khóa phổ biến