Câu hỏi 5 trang 96 SGK Giải tích 12
Giải câu hỏi 5 trang 96 SGK Giải tích 12. Lập bảng theo mẫu dưới đây rồi dùng bảng đạo hàm trang 77...
Đề bài
Lập bảng theo mẫu dưới đây rồi dùng bảng đạo hàm trang 77 và trong SGK Đại số và Giải tích 11 để điền vào các hàm số thích hợp vào cột bên phải.
\(f'\left( x \right)\) |
\(f\left( x \right) + C\) |
\(0\) |
|
\(\alpha {x^{\alpha - 1}}\) |
|
\(\dfrac{1}{x}\) |
|
\({e^x}\) |
|
\({a^x}\ln a\left( {a > 0,a \ne 1} \right)\) |
|
\(\cos x\) |
|
\( - \sin x\) |
|
\(\dfrac{1}{{{{\cos }^2}x}}\) |
|
\( - \dfrac{1}{{{{\sin }^2}x}}\) |
|
Lời giải chi tiết
\(f'\left( x \right)\) |
\(f\left( x \right) + C\) |
\(0\) |
\(C\) |
\(\alpha {x^{\alpha - 1}}\) |
\({x^\alpha } + C\) |
\(\dfrac{1}{x}\) |
\(\ln \left| x \right| + C\) |
\({e^x}\) |
\({e^x} + C\) |
\({a^x}\ln a\left( {a > 0,a \ne 1} \right)\) |
\({a^x} + C\) |
\(\cos x\) |
\(\sin x + C\) |
\( - \sin x\) |
\(\cos x + C\) |
\(\dfrac{1}{{{{\cos }^2}x}}\) |
\(\tan x + C\) |
\( - \dfrac{1}{{{{\sin }^2}x}}\) |
\(\cot x + C\) |
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu hỏi 5 trang 96 SGK Giải tích 12 timdapan.com"