Câu 3.20 trang 143 sách bài tập Giải tích 12 Nâng cao

Giả sử khi áp dụng công thức nguyên hàm từng phần, ta dẫn đến


Đề bài

Giả sử khi áp dụng công thức nguyên hàm từng phần, ta dẫn đến

               \(\int {f\left( x \right)} dx = aG\left( x \right) - b\int {f\left( x \right)} dx\)

Với \(b \ne 1\)

Chứng minh rằng

                                \(\int {f\left( x \right)} dx = {{aG\left( x \right)} \over {b + 1}} + C\) với C là hằng số.

Lời giải chi tiết

Ta có: \(\int {f\left( x \right)dx + b} \int {f\left( x \right)} dx = aG\left( x \right) + {C_1}\) (\({C_1}\) là hằng số nào đó).

Hay \(\left( {b + 1} \right)f\left( x \right)dx = aG\left( x \right) + {C_1}\)

Do đó: \(\int {f\left( x \right)dx}  = {{aG\left( x \right)} \over {b + 1}} + {{{C_1}} \over {b + 1}} = {{aG\left( x \right)} \over {b + 1}} + C\)



Bài học liên quan

Từ khóa phổ biến