Câu 3.19 trang 143 sách bài tập Giải tích 12 Nâng cao

Dùng phương pháp lấy nguyên hàm từng phần, hãy tìm


Dùng phương pháp lấy nguyên hàm từng phần, hãy tìm

LG a

\(\int {{x^2}{e^x}} dx\) 

Lời giải chi tiết:

\(\left( {{x^2} - 2x + 2} \right){e^x} + C\)                                    

Hướng dẫn: \(v' = {e^x},u = {x^2}\)


LG b

\(\int {3{x^2}{\rm{cos}}\left( {2x} \right)} dx\)

Lời giải chi tiết:

\({3 \over 4}\left( {2\cos x - 2\sin x + 2{x^2}\sin 2x} \right) + C\)           

Hướng dẫn: \(v' = c{\rm{os}}\left( {2x} \right),u = {x^2}\)


LG c

\(\int {{x^3}\ln \left( {2x} \right)} dx\)

Lời giải chi tiết:

\({{{x^4}\ln \left( {2x} \right)} \over 2} - {{{x^4}} \over {16}} + C\)                                           

Hướng dẫn: \(v' = {x^3},u = \ln \left( {2x} \right)\)


LG d

\(\int {{x^2}{\rm{cos}}\left( {3x} \right)} dx\)

Lời giải chi tiết:

\( - {{6x\cos \left( {3x} \right) - 2\sin \left( {3x} \right) + 9{x^2}\sin \left( {3x} \right)} \over {27}} + C\)



Bài học liên quan

Từ khóa phổ biến