Bài 12 trang 157 SGK Đại số 10
Giải bài 12 trang 157 SGK Đại số 10. Giá trị của biểu thức là:
Đề bài
Giá trị của biểu thức \(\displaystyle A = {{2{{\cos }^2}{\pi \over 8} - 1} \over {1 + 8{{\sin }^2}{\pi \over 8}{{\cos }^2}{\pi \over 8}}}\) là:
(A) \(\displaystyle {{ - \sqrt 3 } \over 2}\)
(B) \(\displaystyle {{ - \sqrt 3 } \over 4}\)
(C) \(\displaystyle {{ - \sqrt 2 } \over 2}\)
(D) \(\displaystyle {{\sqrt 2 } \over 4}\)
Lời giải chi tiết
\(\begin{array}{l}
A = \dfrac{{\cos \left( {2.\dfrac{\pi }{8}} \right)}}{{1 + 2.{{\left( {2\sin \dfrac{\pi }{8}\cos \dfrac{\pi }{8}} \right)}^2}}}\\
= \dfrac{{\cos \dfrac{\pi }{4}}}{{1 + 2{{\sin }^2}\dfrac{\pi }{4}}}\\
= \dfrac{{\sqrt 2 }}{2}:\left[ {1 + 2.{{\left( {\dfrac{{\sqrt 2 }}{2}} \right)}^2}} \right]\\
= \dfrac{{\sqrt 2 }}{2}:\left( {1 + 2} \right)\\
= \dfrac{{\sqrt 2 }}{4}
\end{array}\)
(D) đúng.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 12 trang 157 SGK Đại số 10 timdapan.com"