Bài 4 trang 68 SGK Giải tích 12

Giải bài 4 trang 68 SGK Giải tích 12. So sánh các cặp số sau:


So sánh các cặp số sau:

LG a

a) \({\log_3}5\) và \({\log_7}4\);     

Phương pháp giải:

Sử dụng so sánh bắc cầu, so sánh với \(1\)

Lời giải chi tiết:

Ta có: \({\log _3}5 > {\log _3}3 = 1;\) \({\log _7}4 < {\log _7}7 = 1\).

Do đó \({\log _3}5 > 1 > {\log _7}4\) hay \({\log _3}5 > {\log _7}4\).


LG b

b) \(\log_{0,3}2\) và \({\log_5}3\);

Phương pháp giải:

Sử dụng so sánh bắc cầu, so sánh với \(0\)

Lời giải chi tiết:

Ta có: \({\log _{0,3}}2 < {\log _{0,3}}1 = 0\) (vì \(0 < 0,3 < 1\)).

Lại có \({\log _5}3 > {\log _5}1 = 0\) (vì \(5 > 1\)).

Do đó \({\log _{0,3}}2 < 0 < {\log _5}3\) hay \({\log _{0,3}}2 < {\log _5}3\).


LG c

c) \({\log _2}10\) và \({\log_5}30\).

Phương pháp giải:

Sử dụng so sánh bắc cầu, so sánh với \(3\)

Lời giải chi tiết:

Ta có: \({\log _2}10 > {\log _2}8 = {\log _2}\left( {{2^3}} \right) = 3\)

Lại có \({\log _5}30 < {\log _5}125 = {\log _5}\left( {{5^3}} \right) = 3\).

Do đó \({\log _2}10 > 3 > {\log _3}50\) hay \({\log _2}10 > {\log _3}50\).



Bài học liên quan

Từ khóa phổ biến