Bài 2.89 trang 136 SBT giải tích 12
Giải bài 2.89 trang 136 sách bài tập giải tích 12. Tìm nghiệm của bất phương trình...
Đề bài
Tìm nghiệm của bất phương trình \(\displaystyle \frac{{{2^x}}}{2} < {2^{\sqrt {7 - x} }}\)
A. \(\displaystyle x < 3\) B. \(\displaystyle x \ge 1\)
C. \(\displaystyle 1 \le x < 3\) D. \(\displaystyle x < 1\)
Phương pháp giải - Xem chi tiết
Biến đổi về bất phương trình mũ có cùng cơ số.
Lời giải chi tiết
ĐK: \(\displaystyle 7 - x \ge 0 \Leftrightarrow x \le 7\).
Khi đó \(\displaystyle \frac{{{2^x}}}{2} < {2^{\sqrt {7 - x} }}\)\(\displaystyle \Leftrightarrow {2^{x - 1}} < {2^{\sqrt {7 - x} }}\) \(\displaystyle \Leftrightarrow x - 1 < \sqrt {7 - x} \) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}x - 1 < 0\\\left\{ \begin{array}{l}x - 1 \ge 0\\{\left( {x - 1} \right)^2} < 7 - x\end{array} \right.\end{array} \right.\)
\(\displaystyle \Leftrightarrow \left[ \begin{array}{l}x < 1\\\left\{ \begin{array}{l}x \ge 1\\{x^2} - x - 6 < 0\end{array} \right.\end{array} \right.\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}x < 1\\\left\{ \begin{array}{l}x \ge 1\\ - 2 < x < 3\end{array} \right.\end{array} \right.\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}x < 1\\1 \le x < 3\end{array} \right. \Leftrightarrow x < 3\).
Chọn A.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 2.89 trang 136 SBT giải tích 12 timdapan.com"