Bài 2.88 trang 109 SBT hình học 10
Giải bài 2.88 trang 109 sách bài tập hình học 10. Tam giác ABC có các cạnh...
Đề bài
Tam giác \(ABC\) có các cạnh \(a,b,c\) thỏa mãn điều kiện \(\left( {a + b + c} \right)\left( {a + b - c} \right) = 3ab\). Khi đó số đo của góc \(C\) là:
A. \({120^0}\)
B. \({30^0}\)
C. \({45^0}\)
D. \({60^0}\)
Phương pháp giải - Xem chi tiết
Sử dụng định lý cô sin trong tam giác \(ABC\): \({c^2} = {a^2} + {b^2} - 2ab\cos C\)
Lời giải chi tiết
Ta có: \(\left( {a + b + c} \right)\left( {a + b - c} \right) = 3ab\)
\( \Leftrightarrow {\left( {a + b} \right)^2} - {c^2} = 3ab\) \( \Leftrightarrow {a^2} + {b^2} + 2ab - {c^2} = 3ab\) \( \Leftrightarrow {c^2} = {a^2} + {b^2} - ab\)
Mà \({c^2} = {a^2} + {b^2} - 2ab\cos C\) nên \({a^2} + {b^2} - 2ab\cos C = {a^2} + {b^2} - ab\)
\( \Leftrightarrow 2\cos C = 1 \Leftrightarrow \cos C = \dfrac{1}{2}\) \( \Leftrightarrow C = {60^0}\).
Chọn D.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 2.88 trang 109 SBT hình học 10 timdapan.com"