Câu hỏi 2 trang 14 SGK Giải tích 12

Giải câu hỏi 2 trang 14 SGK Giải tích 12. Giả sử f(x) đạt cực đại tại xo. Hãy chứng minh khẳng định 3 trong chú ý trên bằng cách xét giới hạn tỉ số...


Đề bài

Giả sử f(x) đạt cực đại tại \(x_0\). Hãy chứng minh khẳng định 3 trong chú ý trên bằng cách xét giới hạn tỉ số \({{f({x_0} + \Delta x) - \,f({x_0})} \over {\Delta x}}\) khi Δx → 0 trong hai trường hợp Δx > 0 và Δx < 0.

Lời giải chi tiết

- Với Δx > 0

Ta có \(\mathop {\lim }\limits_{\Delta x \to {0^ + }} \dfrac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}} = 0 = f'\left( {x_0^ + } \right)\)

Với Δx < 0

Ta có \(\mathop {\lim }\limits_{\Delta x \to {0^ - }} \dfrac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}} = 0 = f'\left( {x_0^ - } \right)\)

Do đó \(\mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}} = 0 = f'\left( {{x_0}} \right)\)



Bài học liên quan

Từ khóa phổ biến