Bài 9 trang 28 SGK Hình học 10
Giải bài 9 trang 28 SGK Hình học 10. Chứng minh rằng nếu G và G’ lần lượt là trọng tâm của các tam giác ABC và A’B’C’ bất kì thì:
Đề bài
Chứng minh rằng nếu \(G\) và \(G’\) lần lượt là trọng tâm của các tam giác \(ABC\) và \(A’B’C’\) bất kì thì: \(3\overrightarrow {GG'} = \overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'}. \)
Lời giải chi tiết
Ta có:
\(\eqalign{
& \overrightarrow {GG'} = \overrightarrow {GA} + \overrightarrow {AA'} + \overrightarrow {A'G'} \cr
& \overrightarrow {GG'} = \overrightarrow {GB} + \overrightarrow {BB'} + \overrightarrow {B'G'} \cr
& \overrightarrow {GG'} = \overrightarrow {GC} + \overrightarrow {CC'} + \overrightarrow {C'G'} \cr} \)
\(\Rightarrow 3\overrightarrow {GG'} = (\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} ) \)\(+ (\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} ) \)\(+ (\overrightarrow {A'G'} + \overrightarrow {B'G'} + \overrightarrow {C'G'} )\) (1)
\(G\) là trọng tâm của tam giác \(ABC\) nên:
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) (2)
\(G’\) là trọng tâm của tam giác \(A’B’C’\) nên:
\(\eqalign{
& \overrightarrow {G'A'} + \overrightarrow {G'B'} + \overrightarrow {G'C'} = \overrightarrow 0 \cr
& \Leftrightarrow \overrightarrow {A'G'} + \overrightarrow {B'G'} + \overrightarrow {C'G'} = \overrightarrow 0 \, \, \, (3)\cr} \)
Từ (1), (2) và (3) suy ra: \(3\overrightarrow {GG'} = \overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'}. \)
loigiaihay.com
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 9 trang 28 SGK Hình học 10 timdapan.com"