Bài 1.63 trang 23 SBT Giải tích 12 Nâng cao
Giải bài 1.63 trang 23 sách bài tập Giải tích 12 Nâng cao. Chứng minh rằng các đồ thị của ba hàm số...
Đề bài
Chứng minh rằng các đồ thị của ba hàm số
\(f(x) = {x^2} - 3x + 4,g(x) = 1 + {1 \over x}\) và \(h(x) = - 4x + 6\sqrt x \)
Tiếp xúc với nhau tại một điểm.
Lời giải chi tiết
Phương trình hoành độ giao điểm của f(x) và g(x) là:
\(\eqalign{
& {x^2} - 3x + 4 = 1 + {1 \over x} \cr
& \Rightarrow {x^3} - 3{x^2} + 3x - 1 = 0 \cr
& \Leftrightarrow {\left( {x - 1} \right)^3} = 0 \cr
& \Leftrightarrow x = 1 \cr} \)
Vậy f(x) và g(x) giao nhau tại A (1; 2)
Ta có: \(-4.1+6.\sqrt 1=2\)
Do đó A thuộc đồ thị của hàm số h(x)
Mặt khác: \(f'\left( 1 \right) = g'\left( 1 \right) = h'\left( 1 \right) = - 1\)
Do đó ba hàm số đã cho tiếp xúc với nhau tại A (1; 2)
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.63 trang 23 SBT Giải tích 12 Nâng cao timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.63 trang 23 SBT Giải tích 12 Nâng cao timdapan.com"