Bài 1.46 trang 19 SBT Giải tích 12 Nâng cao
Giải bài 1.46 trang 19 sách bài tập Giải tích 12 Nâng cao. Tìm các hệ số a, b, c sao cho đồ thị hàm số...
LG a
Tìm các hệ số a, b, c sao cho đồ thị hàm số
\(f(x) = {x^3} + a{x^2} + bx + c\)
Cắt trục tung tại điểm có tung độ là 2 và tiếp xúc với đường thẳng y = 1 tại điểm có hoành độ là –1
Lời giải chi tiết:
(C) cắt trục tung tại \(\left( {0;2} \right)\) nên \(2 = f\left( 0 \right)\)
\( \Leftrightarrow 2 = {0^3} + a{.0^2} + b.0 + c\)
\( \Leftrightarrow c = 2\)
Vì đồ thị của hàm số cần tìm đi qua điểm (-1;1) nên \(f\left( { - 1} \right) = - 1 + 1-b + 2 = 1\).
Do đó \(a = b\).
Ta có: \(f'\left( x \right) = 3{x^2} + 2ax + b\)
Vì đồ thị tiếp xúc với đường thẳng \(y = 1\) tại điểm có hoành độ là -1 nên \(f'( - 1) = 3 - 2a + b = 0\)
Hay \(-2a+b=-3\).
Ta có hệ:
\(\left\{ \begin{array}{l}a = b\\ - 2a + b = - 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = b\\ - 2a + a = - 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 3\end{array} \right.\)
Vậy \(a = 3,b = 3,c = 2\).
LG b
Khảo sát sự biến thiên và vẽ đồ thị của hàm số với các giá trị vừa tìm được của a, b, c.
Lời giải chi tiết:
Với \(a = 3,b = 3,c = 2\) ta có \(y = {x^3} + 3{x^2} + 3x + 2\)
+) TXĐ: \(D = \mathbb{R}\).
+) Chiều biến thiên:
\(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ,\mathop {\lim }\limits_{x \to - \infty } y = - \infty \)
\(\begin{array}{l}y' = 3{x^2} + 6x + 3\\y' = 0 \Leftrightarrow 3{x^2} + 6x + 3 = 0\\ \Leftrightarrow 3{\left( {x + 1} \right)^2} = 0 \Leftrightarrow x = - 1\end{array}\)
\(y' \ge 0,\forall x \in \mathbb{R}\) nên hàm số đồng biến trên \(\mathbb{R}\).
Hàm số không có cực trị.
BBT:
+) Đồ thị:
\(\begin{array}{l}y'' = 6x + 6\\y'' = 0 \Leftrightarrow 6x + 6 = 0\\ \Leftrightarrow x = - 1 \Rightarrow y\left( { - 1} \right) = 1\end{array}\)
Điểm uốn \(I\left( { - 1;1} \right)\).
Đồ thị hàm số cắt trục tung tại điểm \(\left( {0;2} \right)\).
Phương trình hoành độ giao điểm:
\(\begin{array}{l}{x^3} + 3{x^2} + 3x + 2 = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} + x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 2 = 0\\{x^2} + x + 1 = 0\left( {VN} \right)\end{array} \right.\\ \Leftrightarrow x = - 2\end{array}\)
Đồ thị cắt trục hoành tại điểm \(\left( { - 2;0} \right)\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.46 trang 19 SBT Giải tích 12 Nâng cao timdapan.com"