Bài 1.45 trang 15 SBT Đại số và Giải tích 11 Nâng cao
Giải bài 1.45 trang 15 sách bài tập Đại số và Giải tích 11 Nâng cao. Tìm các nghiệm của phương trình trên khoảng...
Đề bài
Tìm các nghiệm của phương trình trên khoảng \(\left( {{\pi \over 4};{{5\pi } \over 4}} \right)\) rồi tìm giá trị gần đúng của chúng, chính xác đến hàng phần trăm:
\(\cos x + \sin x + {1 \over {\sin x}} + {1 \over {\cos x}} = {{10} \over 3}\)
Lời giải chi tiết
Ta có:
\(\cos x + \sin x + {1 \over {\sin x}} + {1 \over {\cos x}} = {{10} \over 3}\)
\( \Leftrightarrow \cos x + \sin x + {{\sin x + \cos x} \over {\sin x\cos x}} = {{10} \over 3}\)
Đặt \(t = \cos x + \sin x\) với \(\left| t \right| \le \sqrt 2 .\) Khi đó \(\sin x\cos x = {{{t^2} - 1} \over 2}\) và phương trình trở thành
\(t + {{2t} \over {{t^2} - 1}} = {{10} \over 3}\,\,\,\,(1)\)
Với điều kiện \(t \ne \pm 1,\) ta có:
\((1) \Leftrightarrow 3{t^2} - 10{t^2} + 3t + 10 = 0\)
\(\Leftrightarrow \left( {t - 2} \right)\left( {3{t^2} - 4t - 5} \right) = 0\)
Phương trình này có ba nghiệm \({t_1} = 2,{t_2} = {{2 + \sqrt {19} } \over 3}\) và \({t_3} = {{2 - \sqrt {19} } \over 3}.\)
Tuy nhiên, chỉ có \({t_3} = {{2 - \sqrt {19} } \over 3}\) là thỏa mãn điều kiện \(\left| t \right| \le \sqrt 2 .\) Do đó phương trình đa cho tương đương với \(\cos x + \sin x = {{2 - \sqrt {19} } \over 3}\) hay
\(\cos \left( {x - {\pi \over 4}} \right) = {{2 - \sqrt {19} } \over {3\sqrt 2 }}\,\,\,\,\,\,\,\,\,(2)\)
Điều kiện \({\pi \over 4} < x < {{5\pi } \over 4}\) tương đương với điều kiện \(0 < x - {\pi \over 4} < \pi .\) Với điều kiện đó ta có
\((2) \Leftrightarrow x - {\pi \over 4} = \arccos {{2 - \sqrt {19} } \over {3\sqrt 2 }}\)
\(\Leftrightarrow x = {\pi \over 4} + \arccos {{2 - \sqrt {19} } \over {3\sqrt 2 }}\)
Lấy các giá trị gần đúng \({\pi \over 4} \approx 0,785\) và \(\arccos {{2 - \sqrt {19} } \over {3\sqrt 2 }} \approx 2,160\) ta được \(x \approx 2,95.\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.45 trang 15 SBT Đại số và Giải tích 11 Nâng cao timdapan.com"