Bài 1.26 trang 11 SBT Đại số và Giải tích 11 Nâng cao
Giải bài 1.26 trang 11 sách bài tập Đại số và Giải tích 11 Nâng cao. Giải các phương trình sau:...
Giải các phương trình sau:
LG a
\(3{\cot ^2}\left( {x + {\pi \over 5}} \right) = 1\)
Lời giải chi tiết:
\(\begin{array}{l}
3{\cot ^2}\left( {x + \frac{\pi }{5}} \right) = 1\\
\Leftrightarrow {\cot ^2}\left( {x + \frac{\pi }{5}} \right) = \frac{1}{3}\\
\Leftrightarrow \left[ \begin{array}{l}
\cot \left( {x + \frac{\pi }{5}} \right) = \frac{1}{{\sqrt 3 }}\\
\cot \left( {x + \frac{\pi }{5}} \right) = - \frac{1}{{\sqrt 3 }}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x + \frac{\pi }{5} = \frac{\pi }{3} + k\pi \\
x + \frac{\pi }{5} = - \frac{\pi }{3} + k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{2\pi }}{{15}} + k\pi \\
x = - \frac{{8\pi }}{{15}} + k\pi
\end{array} \right.
\end{array}\)
Vậy phương trình có nghiệm \(x = {{2\pi } \over {15}} + k\pi ,x = -{{8\pi } \over {15}} + k\pi \).
LG b
\({\tan ^2}\left( {2x - {\pi \over 4}} \right) = 3\)
Lời giải chi tiết:
\(\begin{array}{l}
{\tan ^2}\left( {2x - \frac{\pi }{4}} \right) = 3\\
\Leftrightarrow \left[ \begin{array}{l}
\tan \left( {2x - \frac{\pi }{4}} \right) = \sqrt 3 \\
\tan \left( {2x - \frac{\pi }{4}} \right) = - \sqrt 3
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x - \frac{\pi }{4} = \frac{\pi }{3} + k\pi \\
2x - \frac{\pi }{4} = - \frac{\pi }{3} + k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \frac{{7\pi }}{{12}} + k\pi \\
2x = - \frac{\pi }{{12}} + k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{7\pi }}{{24}} + \frac{{k\pi }}{2}\\
x = - \frac{\pi }{{24}} + \frac{{k\pi }}{2}
\end{array} \right.
\end{array}\)
Vậy \(x = {{7\pi } \over {24}} + k{\pi \over 2},x = - {\pi \over {24}} + k{\pi \over 2}\)
LG c
\(7\tan x - 4\cot x = 12\)
Lời giải chi tiết:
ĐK:
\(\begin{array}{l}
\left\{ \begin{array}{l}
\sin x \ne 0\\
\cos x \ne 0
\end{array} \right.\\
\Leftrightarrow \sin x\cos x \ne 0\\
\Leftrightarrow 2\sin x\cos x \ne 0\\
\Leftrightarrow \sin 2x \ne 0\\
\Leftrightarrow 2x \ne k\pi \\
\Leftrightarrow x \ne \frac{{k\pi }}{2}
\end{array}\)
Khi đó,
\(\begin{array}{l}
PT \Leftrightarrow 7\tan x - \frac{4}{{\tan x}} = 12\\
\Leftrightarrow 7{\tan ^2}x - 12\tan x - 4 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\tan x = 2\\
\tan x = - \frac{2}{7}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \arctan 2 + k\pi \\
x = \arctan \left( { - \frac{2}{7}} \right) + k\pi
\end{array} \right.(TM)
\end{array}\)
Vậy \(x = \arctan 2 + k\pi ,\) \(x = \arctan \left( { - \frac{2}{7}} \right) + k\pi\)
LG d
\({\cot ^2}x + \left( {\sqrt 3 - 1} \right)\cot x - \sqrt 3 = 0\)
Lời giải chi tiết:
\(\begin{array}{l}
PT \Leftrightarrow {\cot ^2}x + \sqrt 3 \cot x - \cot x - \sqrt 3 = 0\\
\Leftrightarrow \cot x\left( {\cot x + \sqrt 3 } \right) - \left( {\cot x + \sqrt 3 } \right) = 0\\
\Leftrightarrow \left( {\cot x + \sqrt 3 } \right)\left( {\cot x - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cot x + \sqrt 3 = 0\\
\cot x - 1 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\cot x = - \sqrt 3 \\
\cot x = 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \frac{\pi }{6} + k\pi \\
x = \frac{\pi }{4} + k\pi
\end{array} \right.
\end{array}\)
Vậy \(x = {\pi \over 4} + k\pi ,x = - {\pi \over 6} + k\pi \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.26 trang 11 SBT Đại số và Giải tích 11 Nâng cao timdapan.com"