Câu 10 trang 110 SGK Đại số 10 nâng cao

Chứng minh rằng:


LG a

Chứng minh rằng, nếu \(x ≥ y ≥ 0\) thì \({x \over {1 + x}} \ge {y \over {1 + y}}\)

Phương pháp giải:

Biến đổi tương đương về các bđt luôn đúng.

Lời giải chi tiết:

Với \(x ≥ y ≥ 0\) , ta có:

\(\eqalign{
& {x \over {1 + x}} \ge {y \over {1 + y}} \cr &\Leftrightarrow x(1 + y) \ge y(1 + x) \cr 
& \Leftrightarrow x + xy \ge y + xy \Leftrightarrow x \ge y \cr} \)

Điều này đúng với giả thiết.

Vậy ta được điều cần phải chứng minh.

Dấu = xảy ra khi x=y.


LG b

Chứng minh rằng đối với hai số tùy ý a, b ta có: \({{|a - b|} \over {1 + |a - b|}} \le {{|a|} \over {1 + |a|}} + {b \over {1 + |b|}}\)

Phương pháp giải:

Áp dụng bất đẳng thức ý a với x=|a|+|b|; y=|a - b|

Lời giải chi tiết:

Vì  \(|a| + |b|≥  |a – b|  \) nên theo câu a ta có:

\({{|a - b|} \over {1 + |a - b|}} \le {{|a| + |b|} \over {1 + |a| + |b|}} \) \(= {{|a|} \over {1 + |a| + |b|}} + {{|b|} \over {1 + |a| + |b|}} \)

\(\le {{|a|} \over {1 + |a|}} + {{|b|} \over {1 + |b|}}\)

Dấu “=” xảy ra khi có ít nhất một số bằng 0 ( tức là a = 0 hoặc b = 0 hoặc a = b = 0).



Bài học liên quan

Từ khóa phổ biến