Bài 6 trang 52 SGK Toán 11 tập 1 - Cánh diều
Tính tổng 100 số hạng đầu của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 0,3n + 5\) với mọi \(n \ge 1\)
Đề bài
Tính tổng 100 số hạng đầu của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 0,3n + 5\) với mọi \(n \ge 1\)
Phương pháp giải - Xem chi tiết
Dựa vào công thức tính cấp số cộng để xác định
Lời giải chi tiết
Ta có:
\({u_n} = 0,3n + 5 \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = 5\\nd = 0,3n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 5,3\\d = 0,3\end{array} \right.\)
Tổng 100 số hạng đầu: \({S_{100}} = \frac{{\left( {{u_1} + {u_{100}}} \right).100}}{2} = \frac{{\left( {5,3 + 0,3.100 + 5} \right).100}}{2} = 2015\)
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 6 trang 52 SGK Toán 11 tập 1 - Cánh diều timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 6 trang 52 SGK Toán 11 tập 1 - Cánh diều timdapan.com"