Bài 2. Giới hạn của hàm số Toán 11 Cánh diều
Giải mục 1 trang 66, 67, 68, 69 SGK Toán 11 tập 1 - Cánh Diều
Xét hàm số (fleft( x right) = 2x.)
a) Xét dãy số (left( {{x_n}} right),) với ({x_n} = 1 + frac{1}{n}.) Hoàn thành bảng giá trị (fleft( {{x_n}} right)) tương ứng.
Giải mục 2 trang 69, 70 SGK Toán 11 tập 1 - Cánh Diều
Cho hai hàm số (fleft( x right) = {x^2} - 1,gleft( x right) = x + 1.)
a) Tính (mathop {lim }limits_{x to 1} fleft( x right)) và (mathop {lim }limits_{x to 1} gleft( x right).)
b) Tính (mathop {lim }limits_{x to 1} left[ {fleft( x right) + gleft( x right)} right])và so sánh (mathop {lim }limits_{x to 1} fleft( x right) + mathop {lim }limits_{x to 1} gleft( x right).)
c) Tính (mathop {lim }limits_{x to 1} left[ {fleft( x right) - gleft( x
Giải mục 4 trang 70, 71, 72 SGK Toán 11 tập 1 - Cánh Diều
Cho hàm số \(f\left( x \right) = x\) có đồ thị như ở Hình 9. Quan sát đồ thị đó và cho biết:
a) Khi biến x dần tới dương vô cực thì \(f\left( x \right)\) dần tới đâu.
b) Khi biến x dần tới âm vô cực thì \(f\left( x \right)\) dần đâu.
Bài 1 trang 72 SGK Toán 11 tập 1 - Cánh Diều
Sử dụng định nghĩa, tìm các giới hạn sau:
a) (mathop {lim }limits_{x to - 3} {x^2};) b) (mathop {lim }limits_{x to 5} frac{{{x^2} - 25}}{{x - 5}}.)
Giải mục 3 trang 70, 71 SGK Toán 11 tập 1 - Cánh Diều
Cho hàm số \(f\left( x \right) = \frac{1}{{x - 1}}\,\,\left( {x \ne 1} \right)\) có đồ thị như ở Hình 8. Quan sát đồ thị đó và cho biết:
a) Khi biến x dần tới 1 về bên phải thì \(f\left( x \right)\) dần tới đâu.
b) Khi biến x dần tới 1 về bên trái thì \(f\left( x \right)\) dần tới đâu
Bài 2 trang 72 SGK Toán 11 tập 1 - Cánh Diều
Biết rằng hàm số (fleft( x right)) thỏa mãn (mathop {lim }limits_{x to {2^ - }} fleft( x right) = 3) và (mathop {lim }limits_{x to {2^ + }} fleft( x right) = 5.) Trong trường hợp này có tồn tại giới hạn (mathop {lim }limits_{x to 2} fleft( x right)) hay không? Giải thích.
Bài 3 trang 72 SGK Toán 11 tập 1 - Cánh Diều
Tính các giới hạn sau:
a) (mathop {lim }limits_{x to 2} left( {{x^2} - 4x + 3} right);) b) (mathop {lim }limits_{x to 3} frac{{{x^2} - 5x + 6}}{{x - 3}};) c) (mathop {lim }limits_{x to 1} frac{{sqrt x - 1}}{{x - 1}}.)
Bài 4 trang 72 SGK Toán 11 tập 1 - Cánh Diều
Tính các giới hạn sau:
a) (mathop {lim }limits_{x to + infty } frac{{9x + 1}}{{3x - 4}};) b) (mathop {lim }limits_{x to - infty } frac{{7x - 11}}{{2x + 3}};) c) (mathop {lim }limits_{x to + infty } frac{{sqrt {{x^2} + 1} }}{x};)
d) (mathop {lim }limits_{x to - infty } frac{{sqrt {{x^2} + 1} }}{x};) e) (mathop {lim }limits_{x to {6^ - }} frac{1}{{x - 6}};) g) (mathop {lim }limits_{x to {7^ + }} frac{1}{{x - 7}}.)
Bài 5 trang 72 SGK Toán 11 tập 1 - Cánh Diều
Một công ty sản xuất máy tính đã xác định được rằng, tính trung bình một nhân viên có thể lắp ráp được (Nleft( t right) = frac{{50t}}{{t + 4}},,left( {t ge 0} right)) bộ phận mỗi ngày sau t ngày đào tạo. Tính (mathop {lim }limits_{t to + infty } Nleft( t right)) và cho biết ý nghĩa của kết quả.
Bài 6 trang 72 SGK Toán 11 tập 1 - Cánh Diều
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x.
a) Tính chi phí trung bình (overline C left( x right)) để sản xuất một sản phẩm.
b) Tính (mathop {lim }limits_{x to + infty } overline C left( x right)) và cho biết ý nghĩa của kết quả.
Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cánh Diều
I. Giới hạn hữu hạn của hàm số tại một điểm