Bài 5 trang 72 SGK Toán 11 tập 1 - Cánh Diều
Một công ty sản xuất máy tính đã xác định được rằng, tính trung bình một nhân viên có thể lắp ráp được (Nleft( t right) = frac{{50t}}{{t + 4}},,left( {t ge 0} right)) bộ phận mỗi ngày sau t ngày đào tạo. Tính (mathop {lim }limits_{t to + infty } Nleft( t right)) và cho biết ý nghĩa của kết quả.
Đề bài
Một công ty sản xuất máy tính đã xác định được rằng, tính trung bình một nhân viên có thể lắp ráp được \(N\left( t \right) = \frac{{50t}}{{t + 4}}\,\,\left( {t \ge 0} \right)\) bộ phận mỗi ngày sau t ngày đào tạo. Tính \(\mathop {\lim }\limits_{t \to + \infty } N\left( t \right)\) và cho biết ý nghĩa của kết quả.
Phương pháp giải - Xem chi tiết
Tính giới hạn bằng phương pháp chia cả tử và mẫu cho \({t^n}\), với n là số mũ cao nhất trong biểu thức.
Lời giải chi tiết
\(\mathop {\lim }\limits_{t \to + \infty } N\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \frac{{50t}}{{t + 4}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{50t}}{{t\left( {1 + \frac{4}{t}} \right)}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{50}}{{1 + \frac{4}{t}}} = \frac{{50}}{{1 + 0}} = 50\)
Vậy khi số ngày đào tạo càng nhiều thì số bộ phận mà trung bình một nhân viên có thể lắp ráp được mỗi ngày tối đa 50 bộ phận.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 5 trang 72 SGK Toán 11 tập 1 - Cánh Diều timdapan.com"