Bài 3 trang 56 SGK Giải tích 12

Giải bài 3 trang 56 SGK Giải tích 12. Viết các số sau theo thứ tự tăng dần


Viết các số sau theo thứ tự tăng dần:

LG a

a) \(1^{3,75}\) ; \(2^{-1}\) ; \((\frac{1}{2})^{-3}\)

Phương pháp giải:

+) Sử dụng công thức đổi cơ số:  \({\left( {\frac{1}{a}} \right)^m} = {a^{ - m}}\).

+) Sử dụng công thức:  \({\left( {{a^m}} \right)^n} = {a^{m.n}}.\)

+) Quy ước:  \({1^m} = 1.\)

Sử dụng tính chất: Trong các lũy thừa cùng cơ số lớn hơn \(1\), lũy thừa nào có số mũ lớn hơn thì lũy thừa đó lớn hơn.

Lời giải chi tiết:

\(1^{3,75}\) ; \(2^{-1}\) ; \((\frac{1}{2})^{-3}\)
Ta có: \({1^{3,75}} = 1 = {2^0};{\left( {\frac{1}{2}} \right)^{ - 3}} = {2^3}.\)
Có: \( - 1 < 0 < 3 \Rightarrow {2^{ - 1}} < {2^0} < {2^3}\) \( \Rightarrow {2^{ - 1}} < {1^{3,75}} < {\left( {\frac{1}{2}} \right)^{ - 3}}.\)
Vậy ta sắp xếp được: \({2^{ - 1}};1,375;{\left( {\frac{1}{2}} \right)^{ - 3}}.\)


LG b

b) \(98^{0}\) ; \(\left ( \frac{3}{7} \right )^{-1}\) ; \(32^{\frac{1}{5}}\).

Phương pháp giải:

+) Sử dụng công thức đổi cơ số:  \({\left( {\frac{1}{a}} \right)^m} = {a^{ - m}}\).

+) Sử dụng công thức:  \({\left( {{a^m}} \right)^n} = {a^{m.n}}.\)

+) Quy ước:  \({1^m} = 1.\)

Sử dụng các công thức lũy thừa, rút gọn các lũy thừa, đưa các lũy thừa đó về dạng một số thực sau đó so sánh các số đó với nhau.

Lời giải chi tiết:

\({98^0};{\left( {\frac{3}{7}} \right)^{ - 1}};{32^{\frac{1}{5}}}.\)
Ta có: \({98^0} = 1;{\left( {\frac{3}{7}} \right)^{ - 1}} = \frac{7}{3} \approx 2,\left( {33} \right);\) \({32^{\frac{1}{5}}} = {\left( {{2^5}} \right)^{\frac{1}{5}}} = 2.\)
Có: \(1 < 2 < \frac{7}{3} \Rightarrow {98^0} < {32^{\frac{1}{5}}} < {\left( {\frac{3}{7}} \right)^{ - 1}}.\)
Vậy ta sắp xếp được: \({98^0};{32^{\frac{1}{5}}};{\left( {\frac{3}{7}} \right)^{ - 1}}.\)



Bài học liên quan

Từ khóa phổ biến