Bài 28 trang 96 SGK Hình học 10 Nâng cao
Xét vị trí tương đối của đường thẳng sau
Đề bài
Xét vị trí tương đối của đường thẳng \(\Delta \) và đường tròn (C) sau đây
\(\eqalign{
& \Delta :3x + y + m = 0, \cr
& (C):{x^2} + {y^2} - 4x + 2y + 1 = 0. \cr} \)
Lời giải chi tiết
(C) có tâm \(I(2, -1)\) và bán kính \(R = \sqrt {{2^2} + {1^2} - 1} = 2.\)
Khoảng cách từ I đến \(\Delta \) là:
\(d\left( {I,\Delta } \right) = {{|3.2 - 1 + m|} \over {\sqrt {{3^2} + {1^2}} }} = {{|5 + m|} \over {\sqrt {10} }}\)
+) Nếu
\({{|5 + m|} \over {\sqrt {10} }} = 2 \Leftrightarrow |m + 5| > 2\sqrt {10}\)
\(\Leftrightarrow \left[ \matrix{
m < - 5 -2 \sqrt {10} \hfill \cr
m > - 5 + 2\sqrt {10} \hfill \cr} \right.\)
thì \(\Delta \) và (C) cắt nhau.
+) Nếu \({{|5 + m|} \over {\sqrt {10} }} = 2 \Leftrightarrow |5 + m| = 2\sqrt {10} \Leftrightarrow m = - 5 \pm 2\sqrt {10} \) thì \(\Delta \) và (C) tiếp xúc.
+) Nếu \({{|5 + m|} \over {\sqrt {10} }} < 2 \Leftrightarrow |5 + m| < 2\sqrt {10} \)
\(\Leftrightarrow - 5 - 2\sqrt {10} < m < - 5 + 2\sqrt {10} \) thì \(\Delta \) và (C) không cắt nhau.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 28 trang 96 SGK Hình học 10 Nâng cao timdapan.com"