Giải Bài 68 trang 88 sách bài tập toán 7 - Cánh diều

Cho góc xOy khác góc bẹt. Oz là tia phân giác của góc đó, M là một điểm bất kì thuộc tia Oz. Qua M vẽ đường thẳng a vuông góc với Ox tại A, cắt Oy tại C. Qua M vẽ đường thẳng b vuông góc với Oy tại B, cắt Ox tại D. Chứng minh:


Đề bài

Cho góc xOy khác góc bẹt. Oz là tia phân giác của góc đó, M là một điểm bất kì thuộc tia Oz. Qua M vẽ đường thẳng a vuông góc với Ox tại A, cắt Oy tại C. Qua M vẽ đường thẳng b vuông góc với Oy tại B, cắt Ox tại D. Chứng minh:

a) OM là đường trung trực của đoạn thẳng AB;

b) Tam giác DMC là tam giác cân.

Phương pháp giải - Xem chi tiết

- Chứng minh: O và M cùng nằm trên đường trung trực của BC.

Suy ra: OM là đường trung trực của AB.

- Chứng minh: \(\Delta A{\rm{D}}M = \Delta BCM\) nên MD = MC

Suy ra tam giác DMC cân tại M.

Lời giải chi tiết

 

a) Vì Oz là tia phân giác của góc xOy nên \(\widehat {xOz} = \widehat {zOy}\)

Xét ∆OAM và ∆OBM có

\(\widehat {OAM} = \widehat {OBM}\left( { = 90^\circ } \right)\)

OM là cạnh chung,

\(\widehat {AOM} = \widehat {BOM}\) (do \(\widehat {xOz} = \widehat {zOy}\))

Do đó ∆OAM = ∆OBM (cạnh huyền – góc nhọn).

Suy ra OA = OB và MA = MB (các cặp cạnh tương ứng).

Nên O và M cùng nằm trên đường trung trực của AB.

Vậy OM là đường trung trực của AB.

b) Xét ∆ADM và ∆BCM có

\(\widehat {DAM} = \widehat {CBM}\left( { = 90^\circ } \right)\),

AM = BM (chứng minh câu a),

\(\widehat {AMD} = \widehat {BMC}\) (hai góc đối đỉnh)

Do đó ∆ADM = ∆BCM (cạnh huyền – góc nhọn).

Suy ra MD = MC (hai cạnh tương ứng).

Do đó tam giác CDM cân tại M.

Vậy tam giác DMC cân tại M.



Từ khóa phổ biến