Bài 10: Tính chất ba đường trung tuyến của tam giác - Cánh diều


Giải Bài 70 trang 89 sách bài tập toán 7 - Cánh diều

Cho tam giác ABC cân tại A có hai trung tuyến BM và CN cắt nhau tại G. Chứng minh: a) BM = CN;

Giải Bài 71 trang 89 sách bài tập toán 7 - Cánh diều

Cho tam giác ABC có trọng tâm G. Gọi M là trung điểm của BC. Trên tia đối của MG lấy điểm D sao cho MD = MG.

Giải Bài 72 trang 90 sách bài tập toán 7 - Cánh diều

Chứng minh: Nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.

Giải Bài 73 trang 90 sách bài tập toán 7 - Cánh diều

Cho tam giác ABC đều và có G là trọng tâm.

Giải Bài 74 trang 90 sách bài tập toán 7 - Cánh diều

Cho tam giác ABC có đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho DE = BD. Gọi M, N lần lượt là trung điểm của BC, CE. Gọi I, K lần lượt là giao điểm của AM, AN với BE. Chứng minh BI = IK = KE.

Giải Bài 75 trang 90 sách bài tập toán 7 - Cánh diều

Tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC. Chứng minh rằng \(\widehat {BAC} = 90^\circ \)

Giải Bài 76 trang 90 sách bài tập toán 7 - Cánh diều

Cho tam giác nhọn ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên cạnh AC lấy điểm E sao cho \(A{\rm{E}} = \frac{1}{3}AC\).

Giải Bài 77 trang 90 sách bài tập toán 7 - Cánh diều

Cho tam giác ABC cân tại A có đường trung tuyến AD, G là trọng tâm. Trên tia đối của tia DA lấy điểm E sao cho DE = DG.

Giải Bài 78 trang 90 sách bài tập toán 7 - Cánh diều

Cho tam giác DEF cân tại D có đường trung tuyến EM. Trên tia đối của tia ME lấy điểm N sao cho MN = ME.

Bài học bổ sung