Bài 6.3 phần bài tập bổ sung trang 167 SBT toán 9 tập 1

Giải bài 6.3 phần bài tập bổ sung trang 167 sách bài tập toán 9. Từ điểm A nằm ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn. Kẻ dây CD song song với AB. Chứng minh rằng BC = BD.


Đề bài

Từ điểm \(A\) nằm ngoài đường tròn \((O),\) kẻ các tiếp tuyến \(AB, AC\) với đường tròn. Kẻ dây \(CD\) song song với \(AB.\)  Chứng minh rằng \(BC = BD.\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm.

+) Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

Lời giải chi tiết

Ta có \(OB ⊥ AB\) (tính chất tiếp tuyến) 

\(AB // CD \;\;(gt)\) nên \(OB ⊥ CD.\)

Gọi \(H\) là giao điểm của \(BO\) và \(CD\) thì \(BH ⊥ CD,\) suy ra \(HC = HD\) (tính chất đường kính dây cung)

Do đó \(BC = BD.\)

Bài giải tiếp theo



Từ khóa phổ biến