Bài 57 trang 165 SBT toán 9 tập 1

Giải bài 57 trang 165 sách bài tập toán 9. Chứng minh rằng nếu tam giác ABC có chu vi 2p,bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức: S=p.r


Đề bài

Chứng minh rằng nếu tam giác \(ABC\) có chu vi \(2p,\) bán kính đường tròn nội tiếp bằng \(r\) thì diện tích \(S\) của tam giác có công thức: \(S = p.r\)

Phương pháp giải - Xem chi tiết

Gọi \(I\) là tâm đường tròn nội tiếp tam giác \(\Delta ABC\).

Để tính diện tích tam giác \(\Delta ABC\) ta tính diện tích các tam giác \(\Delta IAB,\)\(\Delta IBC,\)\(\Delta ICA.\)

Lời giải chi tiết

Gọi \(I\) là tâm đường tròn nội tiếp tam giác \(ABC\)

Nối \(IA, IB, IC.\)

Khoảng cách từ tâm \(I\) đến các tiếp điểm là đường cao của các tam giác \(IAB, IAC, IBC.\)

Ta có: \({S_{ABC}} = {S_{IAB}} + {S_{IAC}} + {S_{IBC}}\)

\(=\displaystyle {1 \over 2}.AB.r + {1 \over 2}.AC.r + {1 \over 2}.BC.r\)

\(= \displaystyle {1 \over 2}(AB + AC + BC).r\)

Mà \(AB + AC + BC = 2p\)

Nên \({S_{ABC}} = \displaystyle {1 \over 2}.2p.r = p.r\)



Từ khóa phổ biến