Bài 1.40 trang 40 SBT đại số và giải tích 11
Giải bài 1.40 trang 40 sách bài tập đại số và giải tích 11. Xác định tính chẵn lẻ của các hàm số...
Xác định tính chẵn lẻ của hàm số
LG a
\(y={\sin}^3 x-\tan x\)
Phương pháp giải:
Hàm số \(y = f(x)\) với tập xác định \(D\) gọi là hàm số chẵn nếu
\(x \in D\) thì \( - x \in D\) và \(f( - x) = f(x)\)
Hàm số \(y = f(x)\) với tập xác định \(D\) gọi là hàm số lẻ nếu
\(x \in D\) thì \( - x \in D\) và \(f( - x) = - f(x)\)
Bước 1: tìm TXĐ \(D\), chứng minh \(D\) là tập đối xứng
Bước 2: lấy \(x \in D \Rightarrow - x \in D\)
Bước 3: xét \(f\left( { - x} \right)\)
Nếu \(f\left( { - x} \right) = f\left( x \right)\) hàm số chẵn
Nếu \(f( - x) = - f(x)\) hàm số lẻ.
Lời giải chi tiết:
ĐKXĐ: \(\cos x\ne 0\Leftrightarrow x\ne \dfrac{\pi}{2}+k\pi,k\in\mathbb{Z}\)
Khi đó tập xác định là: \(D=\mathbb{R}\backslash{\left\{{\dfrac{\pi}{2}+k\pi,k\in\mathbb{Z}}\right\}}\) là tập đối xứng.
Ta có: \(f( - x) ={\sin}^3 (-x)-\tan (-x)\)
\(=-{\sin}^3 x-(-\tan x)\)
\(=-({\sin}^3 x-\tan x)\)
\(=- f(x)\)
Vậy \(y={\sin}^3 x-\tan x\) là hàm số lẻ.
LG b
\(y=\dfrac{\cos x+{\cot}^2 x}{\sin x}\)
Phương pháp giải:
Hàm số \(y = f(x)\) với tập xác định \(D\) gọi là hàm số chẵn nếu
\(x \in D\) thì \( - x \in D\) và \(f( - x) = f(x)\)
Hàm số \(y = f(x)\) với tập xác định \(D\) gọi là hàm số lẻ nếu
\(x \in D\) thì \( - x \in D\) và \(f( - x) = - f(x)\)
Bước 1: tìm TXĐ \(D\), chứng minh \(D\) là tập đối xứng
Bước 2: lấy \(x \in D \Rightarrow - x \in D\)
Bước 3: xét \(f\left( { - x} \right)\)
Nếu \(f\left( { - x} \right) = f\left( x \right)\) hàm số chẵn
Nếu \(f( - x) = - f(x)\) hàm số lẻ.
Lời giải chi tiết:
ĐKXĐ: \(\sin x\ne 0\Leftrightarrow x\ne k\pi,k\in\mathbb{Z}\)
Khi đó tập xác định là \(D=\mathbb{R}\backslash{\left\{{k\pi,k\in\mathbb{Z}}\right\}}\)
Ta có: \(f( - x) =\dfrac{\cos (-x)+{\cot}^2 (-x)}{\sin (-x)}\)
\(=\dfrac{\cos x+{(-\cot x)}^2}{-\sin x}\)
\(=\dfrac{\cos x+{\cot}^2 x}{-\sin x}\)
\(=-\dfrac{\cos x+{\cot}^2 x}{\sin x}\)
\(=- f(x)\)
Vậy \(y=\dfrac{\cos x+{\cot}^2 x}{\sin x}\) là hàm số lẻ.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.40 trang 40 SBT đại số và giải tích 11 timdapan.com"