Bài 2.68 trang 71 SBT Đại số và Giải tích 11 Nâng cao
Giải bài 2.68 trang 71 sách bài tập Đại số và Giải tích 11 Nâng cao. Xác định n để...
Đề bài
Xác định n để khai triển của \({\left( {x + 2} \right)^n}\) (theo lũy thừa của x), hệ số của số hạng thứ 10 lớn hơn hệ số của số hạng thứ 9 và hệ số của số hạng thứ 11.
Lời giải chi tiết
Khai triển \({\left( {x + 2} \right)^n}\) theo lũy thừa giảm của x là
\({\left( {x + 2} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{x^{n - k}}{2^k}} \)
Do đó ta phải có \(C_n^9{2^9} > C_n^8{2^8}\) và \(C_n^{9}{2^{9}} > C_n^{10}{2^{10}}\) hay \(2\left( {n - 8} \right) > 0\) và \(10 > 2\left( {n - 9} \right).\)
Từ đó 12,5 < n< 14.
Suy ra n = 13.
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 2.68 trang 71 SBT Đại số và Giải tích 11 Nâng cao timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 2.68 trang 71 SBT Đại số và Giải tích 11 Nâng cao timdapan.com"