Bài 5.30 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
Chứng minh rằng giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\left| x \right|}}{x}\) không tồn tại
Đề bài
Chứng minh rằng giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\left| x \right|}}{x}\) không tồn tại.
Phương pháp giải - Xem chi tiết
Dùng định nghĩa của biến hội tụ để chứng minh
Lời giải chi tiết
\(f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\left| x \right|}}{x}\)
Ta lấy hai dãy của biến hội tụ về 0: \(x_n^{\left( 1 \right)} = \frac{1}{n};x_n^{\left( 2 \right)} = - \frac{1}{n}\;\)
Khi đó: \(\lim f\left( {x_n^{\left( 1 \right)}} \right) = \lim \left( {\frac{{\frac{1}{n}}}{{\frac{1}{n}}}} \right) = 1\)
\(\lim f\left( {x_n^{\left( 2 \right)}} \right) = \lim \left( {\frac{{\frac{1}{n}}}{{ - \frac{1}{n}}}} \right) = - 1\)
\(\mathop {\lim }\limits_{x \to + \infty } \left( {x_n^{\left( 1 \right)}} \right) \ne \mathop {\lim }\limits_{x \to + \infty } \left( {x_n^{\left( 2 \right)}} \right)\)
Vậy không tồn tại \(\mathop {\lim }\limits_{x \to 0} \frac{{\left| x \right|}}{x}\)
Search google: "từ khóa + timdapan.com" Ví dụ: " Bài 5.30 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức timdapan.com"