Bài 5.23 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức

Cho hàm số \(f\left( x \right) = \frac{{x + 1}}{{\left| {x + 1} \right|}}\). Hàm só \(f\left( x \right)\) liên tục trên A. \(\left( { - \infty ;\; + \infty } \right)\) B. \(\left( { - \infty ;\; - 1} \right]\) C. \(\left( { - \infty ;\; - 1} \right) \cup \left( { - 1;\; + \infty } \right)\) D. \(\left[ { - 1;\; + \infty } \right)\)


Đề bài

Cho hàm số \(f\left( x \right) = \frac{{x + 1}}{{\left| {x + 1} \right|}}\). Hàm só \(f\left( x \right)\) liên tục trên

A. \(\left( { - \infty ;\; + \infty } \right)\)                      

B. \(\left( { - \infty ;\; - 1} \right]\)                               

C. \(\left( { - \infty ;\; - 1} \right) \cup \left( { - 1;\; + \infty } \right)\)                    

D. \(\left[ { - 1;\; + \infty } \right)\)      

Phương pháp giải - Xem chi tiết

Hàm số liên tục trên khoảng (a,b) nếu:

\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right),\;\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\)

Lời giải chi tiết

Đáp án: C



Bài học liên quan

Từ khóa phổ biến