Bài 5.29 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
Tính các giới hạn một bên: a) \(\mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} - 9}}{{\left| {x - 3} \right|}}\); b) \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{x}{{\sqrt {1 - x} }}\)
Đề bài
Tính các giới hạn một bên:
a) \(\mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} - 9}}{{\left| {x - 3} \right|}}\);
b) \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{x}{{\sqrt {1 - x} }}\)
Phương pháp giải - Xem chi tiết
Dùng tính chất các giới hạn của hàm số để tính.
Lời giải chi tiết
a) \(x \to {3^ + } \Rightarrow x - 3 > 0\)
\(\mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} - 9}}{{\left| {x - 3} \right|}} = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} - 9}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} \left( {x + 3} \right) = 6\)
b) \(\mathop {\lim }\limits_{x \to {1^ - }} x = 1\)
\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{\sqrt {1 - x} }} = + \infty \)
\( \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} \frac{x}{{\sqrt {1 - x} }} = + \infty \)
Search google: "từ khóa + timdapan.com" Ví dụ: " Bài 5.29 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức timdapan.com"