Bài 5.25 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
Cho dãy số \(\left( {{u_n}} \right)\) có tính chất \(\left| {{u_n} - 1} \right| < \frac{2}{n}\). Có kết luận gì về giới hạn của dãy số này?
Đề bài
Cho dãy số \(\left( {{u_n}} \right)\) có tính chất \(\left| {{u_n} - 1} \right| < \frac{2}{n}\). Có kết luận gì về giới hạn của dãy số này?
Phương pháp giải - Xem chi tiết
Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử và mẫu cho lũy thừa cao nhất của n, rồi áp dụng quy tắc tính giới hạn
Lời giải chi tiết
\(\left| {{u_n} - 1} \right| < \frac{2}{n}\)
\( - \frac{2}{n} < {u_n} - 1 < \frac{2}{n}\)
\( - \frac{2}{n} + 1 < {u_n} < \frac{2}{n} + 1\)
\(\lim \left( { - \frac{2}{n} + 1} \right) = 1;\;\;\lim \left( {\frac{2}{n} + 1} \right) = 1\)
\( \Rightarrow \lim {u_n} = 1\)
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: " Bài 5.25 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: " Bài 5.25 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức timdapan.com"