Bài 5.21 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
Cho hàm số (fleft( x right) = sqrt {x + 1} - sqrt {x + 2} ). Mệnh đề đúng là A. (mathop {lim }limits_{x to + infty } fleft( x right) = - infty ) B. (mathop {lim }limits_{x to + infty } fleft( x right) = 0) C. (mathop {lim }limits_{x to + infty } fleft( x right) = - 1) D. (mathop {lim }limits_{x to + infty } fleft( x right) = - frac{1}{2})
Đề bài
Cho hàm số \(f\left( x \right) = \sqrt {x + 1} - \sqrt {x + 2} \). Mệnh đề đúng là
A. \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - \infty \)
B. \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0\)
C. \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - 1\)
D. \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - \frac{1}{2}\)
Phương pháp giải - Xem chi tiết
Đây là giớ hạn dạng \(\frac{0}{0}\), để khử dạng này ta nhân liên hợp. Sau đó, ta chia cả tử và mẫu cho lũy thừa cao nhất của n, rồi áp dụng quy tắc tính giới hạn.
Lời giải chi tiết
Ta có:
\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {x + 1} - \sqrt {x + 2} } \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1 - x - 2}}{{\sqrt {x + 1} + \sqrt {x + 2} }} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 1}}{{\sqrt {x + 1} + \sqrt {x + 2} }} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{{ - 1}}{x}}}{{\sqrt {1 + \frac{1}{x}} + \sqrt {1 + \frac{2}{x}} }} = \frac{0}{2} = 0\)
Đáp án: B
Search google: "từ khóa + timdapan.com" Ví dụ: " Bài 5.21 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức timdapan.com"