Bài 35 trang 20 SGK Toán 9 tập 1

Giải bài 35 trang 20 SGK Toán 9 tập 1. Tìm x, biết:


Tìm \(x\), biết: 

LG a

\(\sqrt {{{\left( {x - 3} \right)}^2}}  = 9\)

Phương pháp giải:

Sử dụng hằng đẳng thức \(\sqrt {{A^2}}  = \left| A \right|\) đưa phương trình về dạng \(\left| A \right| = m\left( {m \ge 0} \right) \Leftrightarrow \left[ \begin{array}{l}A = m\\A =  - m\end{array} \right.\)

Lời giải chi tiết:

Ta có: 

\(\sqrt {{{\left( {x - 3} \right)}^2}}  = 9  \Leftrightarrow \left| {x - 3} \right| = 9\)

\( \Leftrightarrow \left[ \matrix{
x - 3 = 9 \hfill \cr 
x - 3 = - 9 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 9 + 3 \hfill \cr 
x = - 9 + 3 \hfill \cr} \right.\)

\( \Leftrightarrow \left[ \matrix{
x = 12 \hfill \cr 
x = - 6 \hfill \cr} \right.\)

Vậy phương trình đã cho có hai nghiệm: \(x = 12\) và \(x = -6\).


LG b

\(\sqrt {4{{\rm{x}}^2} + 4{\rm{x}} + 1}  = 6\)

Phương pháp giải:

Sử dụng hằng đẳng thức \(\sqrt {{A^2}}  = \left| A \right|\) đưa phương trình về dạng \(\left| A \right| = m\left( {m \ge 0} \right) \Leftrightarrow \left[ \begin{array}{l}A = m\\A =  - m\end{array} \right.\)

Lời giải chi tiết:

Ta có:

\(\sqrt{4x^2+4x+1}=6 \Leftrightarrow \sqrt{2^2x^2+4x+1}=6\)

\(\Leftrightarrow \sqrt{(2x)^2+2.2x+1^2}=6\)

\(\Leftrightarrow \sqrt{(2x+1)^2}=6\)

\(\Leftrightarrow |2x+1| =6\)

\(\eqalign{
& \Leftrightarrow \left[ \matrix{
2x + 1 = 6 \hfill \cr 
2x + 1 = - 6 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
2x = 6 - 1 \hfill \cr 
2x = - 6 - 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
2x = 5 \hfill \cr 
2x = - 7 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = \dfrac{5}{2} \hfill \cr 
x = \dfrac{-7}{2} \hfill \cr} \right. \cr} \)

Vậy phương trình có \(2\) nghiệm \(x = \dfrac{5}{2}\) và \(x=\dfrac{-7}{2}\).



Từ khóa phổ biến